ISSN: 2375-2998
International Journal of Electrical and Electronic Science  
Manuscript Information
 
 
Current–Voltage Characteristics in ZnS-ZnO Mixed System
International Journal of Electrical and Electronic Science
Vol.5 , No. 3, Publication Date: May 30, 2018, Page: 56-62
954 Views Since May 30, 2018, 507 Downloads Since May 30, 2018
 
 
Authors
 
[1]    

Geeta Rani, Miranda House, Department of Physics, University of Delhi, Delhi, India.

 
Abstract
 

This paper reports the synthesis of Zinc sulfide (ZnS) nanoparticles by the wet-chemical precipitation method with their transformation to ZnS-ZnO mixed system through the annealing treatment method. The characterizations of the system are made by using structural, electrical and optical techniques. The crystal structure has been changed from cubic ZnS phase to hexagonal ZnO phase in the midst of ZnS-ZnO mixed system with variation in the temperature by using X-ray diffraction technique (XRD). The morphology changed from the nanorods to nanoparticles with increasing annealing temperature as confirmed by transmission electron microscopy (TEM). To find the role of organic impurities trapped inside the material has been studied by the Fourier Transform Electron Microscopy (FTIR). The dc-electrical conductivities of the ZnS-ZnO system at room temperature were measured from I-V characteristics curves made by using the keithley electrometer and the semiconducting electrical behavior has been observed and found that the electrical conductivity from ZnS phase to ZnO phase decreases with the increasing annealing temperature. The change in the vibration bands related to sulfur and oxygen were also investigated in this system.


Keywords
 

ZnS–ZnO Mixed System, Nanoparticles, Nanorods, Annealing Temperature, DC Conductivity etc


Reference
 
[01]    

F. Caruso, Adv. Mater. 13 (1) (2001), pp. 11-22.

[02]    

Y. Lu, Y. Yin, Z. Y. Li, Y. Xia, Nano Lett. 2 (7) (2002), pp. 785-788.

[03]    

S. H. Liu, M. Y. Han, Adv. Funct. Mater. 15 (2005), pp. 961-967.

[04]    

F. Fleischhaker, R. Zentel Chem. Mater. 17 (2005), pp. 1346-1351.

[05]    

J. L. Zhang, R. S. Srivastava, R. D. K. Misra, Langmuir 23 (2007), pp. 6342-6351.

[06]    

P. Alivisatos, Nat. Biotechnol. 22 (2004), pp. 47-52.

[07]    

D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig, Nano Lett. 4 (3) (2004), pp. 409-413.

[08]    

R. van de Coevering, A. P. Alfers, E. Meeldijk, E. Martinez-Viviente, P. S. Pregosin, R. J. M. Klein Gebbink, G. van Koten, J. Am. Chem. Soc. 128 (2006), pp. 12700-12713.

[09]    

Y. W. Cao, R. C. Jin, C. A. Mirkin, J. Am. Chem. Soc. 123 (2001), pp. 7961-7962.

[10]    

X. Y. Kong, Y. Ding, Z. L. Wang, J. Phys. Chem. B 108 (2004), pp. 570-574.

[11]    

Y. Yang, O. Chen, A. Angerhofer, Y. C. Cao, J. Am. Chem. Soc. 128 (2006), pp. 12428-12429.

[12]    

G. Li, J. Fan, R. Jiang, Y. Gao, Chem. Mater. 16 (2004), pp. 1835-1837.

[13]    

H. Zhang, X. Luo, J. Xu, B. Xiang, D. Yu, J. Phys. Chem. B 108 (2004), pp. 14866-14869.

[14]    

C. M. Lieber, Nano Lett. 2 (2002), pp. 81-82.

[15]    

Y. Xai, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15 (5) (2003), pp. 353-389.

[16]    

S. Kan, T. Mokari, E. Rothenberg, U. Banin, Nat. Mater. 2 (3) (2003), pp. 155-158.

[17]    

K. Santa Chawla, Jayanthi, Harish Chander, D. Haranath, S. K. Halder, M. Kar. J. Alloys and Compounds. 459 (2008), pp. 457-460.

[18]    

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001), pp. 1897-1899.

[19]    

Z. S. Wang, C. H. Huang, Y. Y. Huang, Y. J. Hou, P. H. Xie, B. W. Zhang, H. M. Cheng, Chem. Mater. 13 (2001), pp. 678-682.

[20]    

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett. 81 (2002), pp. 3648-3650.

[21]    

X. Chu, D. L. Jiang, A. B. Djurisic, H. L. Yu, Chem. Phys. Lett. 401 (2005), pp. 426-429.

[22]    

M. Bredol, J. Merikhi, J. Mater. Sci. 33 (1998), pp. 471-476.

[23]    

G. Sharma, S. D. Han, J. D. Kim, S. P. Khatkar, Y. W. Rhee, Mater. Sci. Eng. B 131 (2006), pp. 271-276.

[24]    

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, D. G. A. Nocera, J. Am. Chem. Soc. 128 (2006), pp. 13320-13321.

[25]    

T. V. Prevenslik, J. Lumin. 87-89 (2000), pp. 1210-1212.

[26]    

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo. S. H. Yang, D. Z. Shen, J. Appl. Phys. 90 (2001), pp. 4489-4493.

[27]    

G. Rani and P. D. Sahare Appl. Phys. A, 116 (2) (2014), pp. 831-837.

[28]    

T. Kryshtab, V. S. Khomchenko, J. A. Andraca-Adame, A. K. Savin, A. Kryvko, G. Juarez, R. Pena-Sierra J. Lum. 129 (2009), pp. 1677-1681.

[29]    

Cullity BD (1956) Element of X-ray diffraction, 2nd edn. Addison-Wesley, NewYork, pp-99.

[30]    

T. V. S. L. Satyavani, B. Ramya Kiran, V. Rajesh Kumar, A. Srinivas Kumar, S. V. Naidu, Engineer. Sci. tech. 19 (1) (2016) pp. 40-44.

[31]    

Ce-Wen Nan, S. Holten, R. Birringer, HaibinGao, H. Kliem, H. Gleiter, phys. stat. sol. 164 (1997), pp. R1-R2.

[32]    

Mo Chi-mel, Zhang Lide, Wang Guozhong, Characteristics of dielectric behaviour in nanostructured materials. Nanostuctr. Mater. 6 (1995), pp. 823.

[33]    

Y-M Chiang, E. B. Lavik, D. A. BlomMater. 9 (1997) pp. 633-642.

[34]    

P. E. de Jongh, D. Vanmaekelbergh, Phys. Rev. Lett. 77 (1996), pp. 3427-3430.

[35]    

X. Zou, E. Ying, S. Dong, Nanotechnology 17 (2006), pp. 4758-4764.

[36]    

R. M. Silverstein Clayton, G. Bassler, T. C. Morrill, Spectrometric identification of organic compounds, 5th edn. Wiley, New York, (1991), pp 91-164.

[37]    

O. Brafman, S. S. Mitra, Phys. Rev. 171 (1968), pp. 931-934.

[38]    

W. G. Nilsen, Phys. Rev. 182 (1969), pp. 838-850.

[39]    

R. Cusco, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M. J. Callahan, Phys. Rev. B75 (2007), pp. 165202.

[40]    

J. F. Scott, T. C. Damen, W. T. Silfvast, R. C. C. Leite, L. F. Cheesman, Optics Commun. 1 (8) (1970), pp. 397.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership