






Vol.5 , No. 2, Publication Date: Apr. 27, 2018, Page: 35-43
[1] | Charalabos Papageorgiou, 1st Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; University Mental Health Research Institute (UMHRI), Athens, Greece. |
[2] | Panos Papageorgiou, Department of Electrical and Computer Engineering, University of Patras, Patras, Greece. |
[3] | Xanthi Stachtea, 1st Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; University Mental Health Research Institute (UMHRI), Athens, Greece. |
[4] | Antonio T. Alexandridis, Department of Electrical and Computer Engineering, University of Patras, Patras, Greece. |
[5] | Maria Margariti, 1st Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. |
[6] | Emmanouil Rizos, 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. |
[7] | George Chrousos, First Department of Paediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. |
[8] | Eleftheria Tsaltas, 1st Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. |
There has been a growing interest in understanding the cognitive processes that underlie human reasoning. Since the N400 component of event related potentials (ERPs) represents the semantic integration of information processing, the present study focuses on the N400 elicited during processing of valid Aristotelian syllogisms vs. Zeno-like paradoxes. Fifty-one healthy participants (28 males, 23 females) were investigated while performing reasoning tasks based on either valid statements or paradoxes, adjusted to induce working memory (WM). The N400 waveform was recorded while the premises / conclusions of each statement were maintained in WM. Analysis revealed that Zeno-like paradoxes elicited a more negative N400 deflection than did valid syllogisms, at a distributed scalp topography with a propensity towards posterior abductions. These results suggest that Aristotelian and paradoxical logic engage distinct electrophysiological semantic processing as reflected by the N400 ERP component.
Keywords
Aristotelian, Event Related Potentials, N400, Paradoxes, Reasoning, Semantic, Zeno
Reference
[01] | Halford, G. S, Wilson, W. H., Phillips, S. (2010). Relational knowledge: the foundation of higher cognition. Trends Cogn Sci, 14, 11, 497-505. https://doi.org/10.1016/j.tics.2010.08.005. |
[02] | Barnes, J. (1984a). Aristotle: Prior Analytics. In J. Barnes (Ed.), The complete works of Aristotle. The revised Oxford translation (Vol. 1, pp. 39–113). NJ: Princeton University Press. |
[03] | Barnes, J. (1984b). Aristotle: Posterior Analytics. In J. Barnes (Ed.), The complete works of Aristotle. The revised Oxford translation (Vol. 1, pp. 114–166). NJ: Princeton University Press. |
[04] | Atmanspacher, H., Filk T., & Römer, H. (2004). Quantum Zeno features of bistable perception. Biological Cybernetics, 90, 17, 33-40. https://doi.org/10.1007/s00422-003-0436-4. |
[05] | Caveing, M. (2000). Zeno. In J. Brunschwig & E. R. G. Lloyd (Eds.), Greek Thought. A guide to classical Knowledge (pp.783-795). London: The Belknap Press of Harvard University Press. |
[06] | Fowler, H. N. (2010). Plato: Cratylus, Parmenides, Greater Hippias, Lesser Hippias. MA. Harvard University Press. |
[07] | Perrin, B. (1916). Plutarch: The Parallel Lives. MA. Harvard University Press. |
[08] | Strumia, A. (2007). Complexity seems to open a way towards a neo Aristotelian-Thomistic ontology. Acta Biomed., 78 Suppl 1, 32-8. |
[09] | Papageorgiou C., Stachtea X., Papageorgiou P., Alexandridis A. T., Tsaltas E., & Angelopoulos E. (2016). Aristotle Meets Zeno: Psychophysiological Evidence. PLoS One, 11 (12), e0168067. https://doi.org/10.1371/journal.pone.0168067. |
[10] | Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol., 118 (10), 2128–48. https://doi.org/10.1016/j.clinph.2007.04.019. |
[11] | Gevins, A., Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex., 10 (9), 829–39. https://doi.org/10.1093/cercor/10.9.829. |
[12] | Evans, J. S. B. T. (2006). The heuristic-analytic theory of reasoning: Extension and evaluation. Psychonomic Bulletin & Review, 13 (3), 378–395. https://doi.org/0.3758/bf03193858. |
[13] | Oaksford, M., & Chater, N. (2001). The probabilistic approach to human reasoning. Trends in Cognitive Sciences, 5 (8), 349–357. https://doi.org/10.1016/s1364-6613(00)01699-5. |
[14] | Kutas, M., Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol, 62, 621-47. https://doi.org/10.1146/annurev.psych.093008.131123. |
[15] | Chwilla, D. J., Brown, C. M., Hagoort, P. (1995). The N400 as a function of the level of processing. Psychophysiology, 32 (3), 274-85. https://doi.org/10.1111/j.1469-8986.1995.tb02956.x. |
[16] | Hundrieser, M., Stahl, J. (2016). How attitude strength and information influence moral decision making: Evidence from event-related potentials. Psychophysiology, 53 (5), 678-88. https://doi.org/10.1111/psyp.12599. |
[17] | Han, J., Cao, B., Cao, Y., Gao, H., Li, F. (2016). The role of right frontal brain regions in integration of spatial relation. Neuropsychologia, 86, 29-37. https://doi.org/10.1016/j.neuropsychologia.2016.04.008. |
[18] | Long, C., Li, J., Chen, A., Qiu, J., Chen, J., Li, H. (2015). Event-related potential responses to letter-string comparison analogies., 233 (5), 1563-73. https://doi.org/10.1007/s00221-015-4230-z. |
[19] | Ferguson, H. J., Cane, J. E., Douchkov, M., Wright, D. (2015). Empathy predicts false belief reasoning ability: evidence from the N400. Soc Cogn Affect Neurosci., 10 (6), 848-55. https://doi.org/10.1093/scan/nsu131. |
[20] | Blanchette, I., El-Deredy, W. (2014). An ERP investigation of conditional reasoning with emotional and neutral contents. Brain Cogn., 91, 45-53. https://doi.org/10.1016/j.bandc.2014.08.001. |
[21] | Wager, T. D., Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci., 3 (4), 255–74. https://doi.org/10.3758/cabn.3.4.255. |
[22] | Baddeley, A. (2012). Working memory: theories, models, and controversies. Annu Rev Psychol., 63, 1–29. https://doi.org/10.1146/annurev-psych-120710-100422. |
[23] | Baddeley, A., Emslie, H., Kolodny, J., Duncan, J. (1998). Random generation and the executive control of working memory. Q. J. Exp. Psychol., 51, 819–852. https://doi.org/10.1080/713755788. |
[24] | Markman, A. B., & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431–467. https://doi.org/10.1006/cogp.1993.1011. |
[25] | Morrison, R. G., Holyoak, K. J., Truong, B. (2001). Working-memory modularity in analogical reasoning (pp. 663–668). In: J. D. Moore, K. Stenning, (Eds.), Proceedings of the Twenty-Third Annual Conference of the Cognitive Science Society. Erlbaum. Mahwah. |
[26] | Papageorgiou, C., Rabavilas, A. D., Stachtea, X., Giannakakis, G. A., Kyprianou, M., Papadimitriou, G. N., et al. (2012). The interference of introversion-extraversion and depressive symptomatology with reasoning performance: a behavioural study. J Psycholinguist Res., 41 (2), 129–39. https://doi.org/10.1007/s10936-011-9181-3. |
[27] | Barnes, J. (1995). The complete works of Aristotle: the revised Oxford translation (p. 39–113). NJ: Princeton University Press. |
[28] | Jasper, H. H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and clinical neurophysiology, 10, 371-5. |
[29] | Delorme, A., Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134 (1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009. |
[30] | Herrmann, C. S., Grigutsch, M., & Busch, N. A. (2005). EEG oscillations and wavelet analysis. In T. C. Handy (Ed.), Event-related potentials: A methods handbook (pp. 229-259). Cambridge, MA: MIT Press. |
[31] | Szucs, D., Soltész, F. (2007). Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia, 45 (14), 3190-202. https://doi.org/10.1016/j.neuropsychologia.2007.06.013. |
[32] | Bennett, M. A., Duke, P. A., Fuggetta, G. (2014). Event-related potential N270 delayed and enhanced by the conjunction of relevant and irrelevant perceptual mismatch. Psychophysiology, 51 (5), 456-63. https://doi.org/10.1111/psyp.12192. |
[33] | Holcomb, P. J. (1993). Semantic priming and stimulus degradation: implications for the role of the N400 in language processing. Psychophysiology, 30 (1), 47-61. https://doi.org/10.1111/j.1469-8986.1993.tb03204.x. |
[34] | Kutas, M., Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends Cogn Sci., 4 (12), 463-470. https://doi.org/10.1016/S1364-6613(00)01560-6. |
[35] | Wang, Y., Cui, L., Wang, H., Tian, S., Zhang, X. (2004). The sequential processing of visual feature conjunction mismatches in the human brain. Psychophysiology, 41 (1), 21-9. https://doi.org/10.1111/j.1469-8986.2003.00134.x |
[36] | Balconi, M., Arangio, R., Guarnerio, C. (2013). Disorders of consciousness and N400 ERP measures in response to a semantic task. J Neuropsychiatry Clin Neurosci., 25 (3), 237-43. https://doi.org/10.1176/appi.neuropsych.12090227. |
[37] | De Pascalis, V., Arwari, B., D'Antuono, L., Cacace, I. (2009). Impulsivity and semantic/emotional processing: an examination of the N400 wave. Clin Neurophysiol., 120 (1), 85-92. https://doi.org/10.1016/j.clinph.2008.10.008. |
[38] | Li, X. Q., Ren, G. Q. (2012). How and when accentuation influences temporally selective attention and subsequent semantic processing during on-line spoken language comprehension: an ERP study. Neuropsychologia, 50 (8), 1882-94. https://doi.org/10.1016/j.neuropsychologia.2012.04.013. |
[39] | Wirsich, J., Bénar, C., Ranjeva, J. P., Descoins, M., Soulier, E., Le Troter, A., Confort-Gouny, S., Liégeois-Chauvel, C., Guye, M. (2014). Single-trial EEG-informed fMRI reveals spatial dependency of BOLD signal on early and late IC-ERP amplitudes during face recognition. Neuroimage, 100, 325-36. https://doi.org/10.1016/j.neuroimage.2014.05.075. |
[40] | Binder, J. R., Desai, R. H., Graves, W. W., Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex, 19 (12), 2767-96. https://doi.org/10.1093/cercor/bhp055. |
[41] | Jefferies, E. (2013). The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 49 (3), 611-25. https://doi.org/10.1016/j.cortex.2012.10.008. |
[42] | Chang, E. F., Raygor, K. P., Berger, M. S. (2015). Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg., 122 (2), 250-61. https://doi.org/10.3171/2014.10.JNS132647. |
[43] | De Neys, W. (2006). Dual processing in reasoning: Two systems but one reasoner. Psychological Science, 17, 428–433. https://doi.org/0.1111/j.1467-9280.2006.01723.x. |
[44] | Evans, J. S., Handley, S. J., Harper, C. N. (2001). Necessity, possibility and belief: a study of syllogistic reasoning. Q J Exp Psychol A., 54 (3), 935-58. https://doi.org/10.1080/713755983. |
[45] | Evans, J. S. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annu Rev Psychol., 59: 255-78. https://doi.org/10.1146/annurev.psych.59.103006.093629. |
[46] | Klein, D. N., Anderson, R. L. (1995). The behavioural high-risk paradigm in the mood disorders. In: G. A. Miller (Ed.), The behavioural high risk paradigm in psychopathology (pp199–221), New York: Springer-Verlag. https://doi.org/10.1007/978-1-4612-4234-5_7. |
[47] | Monti, M. M., Osherson, D. N., Martinez, M. J., & Parsons, L. M. (2007). Functional neuroanatomy of deductive inference: a language-independent distributed network. NeuroImage, 37, 1005-1016. https://doi.org/10.1016/j.neuroimage.2007.04.069. |
[48] | Reverberi, C., Cherubini, P., Rapisarda, A., Rigamonti, E., Caltagirone, C., Frackowiak, R. S. J., Macaluso, E., & Paulesua, E. (2007). Neural basis of generation of conclusions in elementary deduction. Neuroimage, 38 (4), 752–762. https://doi.org/10.1016/j.neuroimage.2007.07.060. |