ISSN: 2375-3846
American Journal of Science and Technology  
Manuscript Information
 
 
Axi-Symmetric Propagation in a Thermoelastic Diffusion with Phase Lags
American Journal of Science and Technology
Vol.3 , No. 4, Publication Date: Jun. 7, 2016, Page: 82-96
2644 Views Since June 7, 2016, 1162 Downloads Since Jun. 7, 2016
 
 
Authors
 
[1]    

Rajneesh Kumar, Department of Mathematics, Kurukshetra University, Kurukshetra, India.

[2]    

Lajvinder Singh Reen, Department of Mathematics, Seth Jai Parkash Mukand Lal Institute of Engineering & Technology, Radaur (Yamunanagar), Haryana, India.

[3]    

S. K. Garg, Department of Mathematics, Deen Bandhu Chhotu Ram University of Science and Technology, Sonipat, Haryana, India.

 
Abstract
 

The purpose of this paper is to depict the effect of thermal and diffusion phase lags due to axisymmetric heat supply for a disc. The problem is discussed within the context of DPLT and DPLD models. The upper and lower surfaces of the disc are traction free and subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform technique and a direct approach without the use of potential functions. The analytical expressions of displacements, stresses and chemical potential, temperature and mass concentration are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of diffusion and thermal phase-lags are shown on the various components. Some particular cases of result are also deduced from the present investigation.


Keywords
 

Dual Phase Lag, Isotropic Thermoelastic, Laplace Transform, Hankel Transform, Plane Axisymmetric, Diffusion


Reference
 
[01]    

Catteno, C.: A form of heat conduction equation which eliminates the paradox of instantaneous Propagation Compute Rendus. 247, 431-433 (1958).

[02]    

Vernotte, P.: Les paradox de la theorie continue de l'equation de la chaleur, Compute Rendus. 246, 3145-3155 (1958).

[03]    

Tzou, D. Y.: Macro to microscale Heat Transfer. The lagging behaviour. Taylor and Francis. Washington, DC, USA (1996).

[04]    

Quintanilla, R. and Racke, R.: A note on stability in dual - phase -lag heat conduction. International Journal of Heat and Mass Transfer. 9 (7-8), 1209-1213 (2006).

[05]    

Kumar, R. and Mukhopadhyay, S.: Analysis of the Effects of Phase-lags on propagation of harmonic Plane waves in Thermoelastic Media. Computational methods in science and technology. 16 (1), 19-28 (2010).

[06]    

Chou, Y. and Yang, R-J.: Two dimensional dual -Phase -lag thermal behaviour in single-/ multi – layer Structures using CESE method. International Journal of Heat and Mass Transfer. 52, 239-249 (2009).

[07]    

Zhou, J., Zang, Y. and Chen, J-K.: An axisymmetric dual-phase-lag bio heat model for laser heating of living Tissues. International Journal of Thermal Sciences. 48, 1477-1485 (2009)

[08]    

Kumar, R., Chawla, V. and Abbas, I. A.: Effect of viscosity on wave propagation in anisotropic thermoelastic medium with three-phase-lag model. Theoret. Appl. Mech. 39 (4), 313-341 (2012).

[09]    

Abbas, A. I., Kumar, R. and Reen, L. S.: Response of thermal source in transversely isotropic thermoelastic materials without energy dissipation and with two temperatures. Can. J. Phys. 92: 1305–1311 (2014).

[10]    

Liu, K-C., Chen, P. J-J. and Wang, J-S.: Analysis of thermal damage in a laser -Irradiated Based on Non-Fourier model. International journal of Engineering and Technology. 6 (2), 132-135 (2014).

[11]    

Ying, X, H. and Yun, J, X.: Time fractional dual-phase-lag heat conduction equation, Chin. Phys. B. 24 (3), 034401 (2015).

[12]    

Mondal, S., Malik, S. H. and Kanoria, M.: Fractional order two-temperature dual-phase-lag thermoelasticity with variable thermal conductivity. Hindawi Publishing Corporation International Scholarly Research Notices 646049 (2014).

[13]    

Abdallah, I. A.: Dual phase lag Heat Conduction and Thermoelastic properties of a semi-infinite medium Induced by Ultrashort Pulsed layer, Progress in Physics, 3, 60-63 (2009).

[14]    

Bhattacharya., D and Kanoria, M.: The influence of two temperature fractional order generalized thermoelastic Diffusion inside a spherical shell. International journal of Engineering and Technical Research. 2 (5), 151-159 (2014).

[15]    

Kaushal, S., Kumar, R., & Miglani, A.: Wave propagation in temperature rate dependent thermoelasticity with two temperatures, Mathematical Sciences, 5, 125–146 (2011)

[16]    

Kaushal, S., Sharma, N., & Kumar, R.: Propagation of waves in generalized thermoelastic continua with two temperature. International Journal of Applied Mechanics and Engineering, 15, 1111–1127 (2010).

[17]    

Rukolaine, A. S.: Unphysical effects of the dual-phase-lag model of heat conduction. International Journal of Heat and Mass Transfer. 78, 58-63 (2014).

[18]    

Tripathi, J. J., Kedar, G, D. & Deshmukh, K. C. Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply, Acta Mechanica, 226 (7), 2121-2134 (2015).

[19]    

Kumar, R. and Gupta, V.: Plane wave propagation in an anisotropic dual-phase-lag thermoelastic diffusion medium, Multidiscipline Modeling in Materials and Structures, 10 (4), 562–592 (2014).

[20]    

Kumar, R. and Gupta, V.: Dual-phase-lag model of wave propagation at the interface between elastic and thermoelastic diffusion media. Journal of Engineering physics and thermophysics, 88 (4), 252–265 (2015).

[21]    

Chiriţă, S., Ciarletta, M. and Tibullo, V.: On the wave propagation in the time differential dual-phase-lag thermoelastic model. repa. royalsocietypublishing. org Proc. R. Soc. A471: 20150400.

[22]    

Sherief, Hany H. and Hamza, Farid A.: Generalized thermoelastic problem of a thick plate under axisymmetric temperature distribution. Journal of Thermal Stresses. 17 (3), 435–452 (1994).

[23]    

Kumar, R., Nidhi, S. and Gupta, V.: Effects of two temperatures and thermal phase -lags in a thick circular axisymmetric heat supply Cogent Mathematics. 3: 1129811 (2016).

[24]    

Gavre, D. P.: Observing stochastic processes and approximate transform inversion. Operations Res. 14, 444-459 (1966).

[25]    

Stehfast, H.: Algorith368, Numerical inversion of Laplace Transforms, Comm. Ass’n. Mach. 47- 49 (1970).

[26]    

Stehfast, H. H.: RemarkonAlgorith368, Numerical inversion of Laplace Transform. Comm. Ass'n. Mach. 3, 624 (1970).

[27]    

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vatterling, W. A.: Numerical recipes, Cambridge University Press. Cambridge, the art of scientific computing. (1986).

[28]    

Dhaliwal, R. S. and Singh, A.: Dynamic coupled thermoelasticity, Hindustance Publisher corp, New Delhi (India), 726 (1980).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership