International Journal of Bioinformatics and Computational Biology  
Manuscript Information
 
 
Landmark-Based Geometric Mophometric Analysis on Nepenthes saranganiensis Kurata in Relationship to the Plant’s Trapping Strategies
International Journal of Bioinformatics and Computational Biology
Vol.1 , No. 1, Publication Date: Jun. 7, 2016, Page: 1-8
3815 Views Since June 7, 2016, 2194 Downloads Since Jun. 7, 2016
 
 
Authors
 
[1]    

John Vincent P. Anino II, Department of Biology, Central Mindanao University, University Town, Musuan, Bukidnon, Philippines.

[2]    

M. Dave P. Buenavista, Department of Biology, Central Mindanao University, University Town, Musuan, Bukidnon, Philippines.

 
Abstract
 

This study was conducted to determine the possible trapping strategies of N. saranganiensis Kurata through landmark-based geometric morphometric analysis. Specifically, it aimed to: (a) determine the quantitative geometric shapes in the upper pitcher peristome and body of N. saranganiensis and (b) determine the ecological traits of the selected wild populations of Nepenthes. High quality photographs of the trap geometry of the plant were taken i.e., the peristome and body shape. The peristome and body shape were studied using a landmark-based methodology that eliminates the effect of variation in the location, orientation, and scale of the specimens. Geographical coordinates, elevation, habitat, air temperature, relative humidity, and animal associates were considered to assess the plant’s ecological traits. Based from the Relative Warps Analysis on the shapes of the peristome and pitcher body of N. saranganiensis, results revealed that the most variable part of the peristome were the lateral and basal regions including the entire structure of the pitcher from the slippery zone, transition zone and digestive zone. Histogram distributions have shown that most of the specimens tend to have wider peristomes and bodies when compared to the shape consensus. Putative functional morphology based from the analysis showed that morphological features of N. saranganiensis exhibits a prominent and developed slippery zone and narrow peristome in relation to its body size as an adaptation for “Dry Syndrome” trapping strategy as this species mainly specialized in prey retention carnivory.


Keywords
 

Functional Morphology, Trapping Strategy, Nepenthes, Geometric Morphometrics, Dry Syndrome


Reference
 
[01]    

Ellison, A. M. and N. S. Gotelli. 2009. Energetics and evolution of carnivorous plants – Darwin’s ‘most wonderful plants in the world’ S Exp Bot 60: 19–42.

[02]    

Cheek, M. and M. Jebb. 2014. Expansion of the Nepenthes alata group (Nepenthaceae), Philippines and descriptions of three new species. Blumea 59: 144–154.

[03]    

Bauer, U., C. Clemente, T. Renner and W. Federle. 2012a. Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants. Journal of Evolutionary Biology. 25: 90–102.

[04]    

Wainwright, P. C. and S. M. Reilly. 1994. Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, London.

[05]    

Juniper, B. E., R. J. Robins and D. M. Joel. 1989. The Carnivorous Plants. Academic Press. London.

[06]    

Bauer, U., T. U. Grafe and W. Federle. 2011. Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. Journal of Experimental Botany 62: 3683–3692.

[07]    

Bonhomme, V., H. Pelloux-prayer, E. Joussein, Y. Forterre, J-J. Labat and L. Gaume. 2011. Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants. New Phytologist 191: 545–554.

[08]    

Moran, J. A., W. E. Booth and J. K. Charles. 1999. Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: implications for prey capture. Annals of Botany 83: 521–528.

[09]    

Moran J. A., M. A. Merbach, N. J. Livingston, C. M. Clarke and W. E Booth. 2001. Termite prey specialization in the pitcher plant Nepenthes albomarginata evidence from stable isotope analysis. Ann. Bot. 88: 307–311.

[10]    

Moran, J. A., C. M. Clarke and B. J. Hawkins. 2003. From carnivore to detritivore? Isotopic evidence for leaf litter utilization by the tropical pitcher plant Nepenthes ampullaria. International Journal of Plant Sciences 164: 635–639.

[11]    

Merbach, M. A., D. J. Merbach, U. Maschwitz, W. E. Booth, B. Fiala and G. Zizka. 2002. Mass march of termites into the deadly trap. Nature 415: 36–37.

[12]    

Clarke, C. M. U. Bauer, C. C. Lee, A. A. Tuen, K. Rembold and J. A. Moran. 2009. Tree shrew lavatories: a novel nitrogen sequestration strategy in a tropical pitcher plant. Biology Letters 5, 632–635.

[13]    

Chin, L., J. A. Moran and C. Clarke. 2010. Trap geometry in three giant montane pitcher plant species from Borneo is a function of tree shrew body size. New Phytologist 186, 461–470.

[14]    

Grafe, T. U., C. R. Schöner, G. Kerth, A. Junaidi and M. G. Schöner. 2011. A novel resource service mutualism between bats and pitcher plants. Biol. Lett. 7: 436–439.

[15]    

Schoner, M. G., C. R. Schoner, R. Simon, U. Graffe, S. J. Puechallie, L. J. Ji and G. Kerth. 2015. Bats are acoustically attracted to mutualistic carnivorous plants. Current Biology 25: 1-6.

[16]    

Sclhichting, C. D., 1986. The evolution of phenotypic plasticity in plants. Ann. Rev. Ecol. Syst. 17: 667-693.

[17]    

Shipunov, A. B. and R. M. Bateman. 2005. Geometric morphometrics as a tool for understanding Dactylorhiza (Orchidaceae) diversity in European Russia. Biological Journal of Linnaean Society 85: 1-12.

[18]    

Sultan S. E., 1987. Evolutionary implications of phenotypic plasticity in plants. Evolutionary Biology 21: 127-178.

[19]    

Sultan, S. E., 2003. Phenotypic plasticity in plants: a new study in ecological development. Evolution and Development 5: 25-33.

[20]    

Viscosi, V., O. Lepais, S. Gerber and P. Fortini. 2009. Leaf morphological analyses in four European oak species (Quercus) and their hybrids: A comparison of traditional and geometric morphometric method: Plant Biosystems. 1-11.

[21]    

Bradshaw, A. D., and K. Hardwick. 1989. Evolution and stress: genotypic and phenotypic component. Biol. J. Linn. Soc. 37, 137-155.

[22]    

Benz, M. J., E. V. Gorb and S. N. Gorb. 2011. Diversity of the slippery zone microstructure in pitchers of nine carnivorous Nepenthes taxa. Arthropod-Plant Interactions 6: 147–158.

[23]    

Clarke, C. and J. A. Moran. 2011. Incorporating ecological context: a revised protocol for the preservation of Nepenthes pitcher plant species (Nepenthaceae). Blumea 56: 225–228.

[24]    

Manting, M. M. E., M. A. J. Torres and C. G. Demayo. 2013. Describing variability in mandible shapes in selected workers of the ant Diacama rugosum (le Guillon) 1842 (Hymenoptera: Formicidae: Ponerinae) International Research Journal of Biological Sciences 2 (6), 8-15.

[25]    

Margini, S. and A. Scoppola. 2010. Geometric morphometrics as a tool to resolve taxonomic problems: the case of Ophioglossum species (ferns). Tools for Identifying Biodiversity: Progress and Problems 251-256.

[26]    

McPherson, S. and V. Amoroso. 2011. Field guide to the pitcher plants of the Philippines. Redfern Natural History Productions Ltd: Poole, England.

[27]    

Cheek, M. and M. Jebb. 2013h. Recircumscription of the Nepenthes alata group (Caryophyllales: Nepenthaceae), in the Philippines, with four new species. European Journal of Taxonomy 69: 1–23.

[28]    

Jamasali, J. A., M. M. E. Manting, M. A. J. Torres and C. G. Demayo. 2014. Geographic variations in morphological shapes of the shell of Terebralia sulcata from Sulu and Tawi-Tawi, Philippines. Australian Journal of Basic and Applied Science 8 (5): 341-348.

[29]    

Hernando, B. J., M. Caasi-lit and M. M. E. Manting. 2014. Quantitative descriptions of head shapes of three different instar-larvae of Asian corn borer Ostrinia furnicalis. Journal of Applied Sciences and Agriculture 9 (11), 257-262.

[30]    

Margini, S. and A. Scoppola. 2010. Geometric morphometrics as a tool to resolve taxonomic problems: the case of Ophioglossum species (ferns). Tools for Identifying Biodiversity: Progress and Problems 251-256.

[31]    

Viscosi, V., O. Lepais, S. Gerber and P. Fortini. 2009. Leaf morphological analyses in four European oak species (Quercus) and their hybrids: A comparison of traditional and geometric morphometric method: Plant Biosystems. 1-11.

[32]    

Rohlf, F. J., 2006. tps Dig: digitize coordinates of landmarks and capture outlines. Stony Brook, Department of Ecology and Evolution, State University of New York.

[33]    

Rohlf, F. L., 2007. tpsRelw version 1.45. SUNY, Stony Brook, NY.

[34]    

Karger, D. K., J. Kluge, S. Abrahamczyk, L. Salazar, J. Homeier, M. Lenhert, V. B. Amoroso and M. Kessler. 2012. Bryophyte cover on trees as proxy for air humidity in the tropics. Ecological Indicators 20: 277-281.

[35]    

Moran, J., L. Gray, C. Clarke and L. Chin. 2013. Capture mechanism in paleotropical pitcher plants (Nepenthaceae) is constrained by climate. In: Annals of Botany 112. Oxford University Press. pp. 1279–1291.

[36]    

Hua, Y. and H. Li. 2005. Food web and fluid in pitchers of Nepenthes mirabilis in Zhuhai, China. Acta Botanica Gallica, 52 (2), 165-175.

[37]    

Ellison, A. M., H. L. Buckley, T. E. Miller and N. J. Gotelli. 2004. Morphological variation in Sarrcacenia purpurea (Sarraceniaceae): Geographic, environmental and taxonomic correlates. American Journal of Botany 9 (11): 1930–1935.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership