ISSN Print: 2381-1420  ISSN Online: 2381-1447
AASCIT Journal of Medicine  
Manuscript Information
 
 
A Review of the Pathophysiology and Consequences of Red Cell Storage - Fresh Versus Stored Red Cells - Implication for Optimum Use of Scarce Allogenic Blood
AASCIT Journal of Medicine
Vol.4 , No. 2, Publication Date: May 16, 2018, Page: 32-50
997 Views Since May 16, 2018, 342 Downloads Since May 16, 2018
 
 
Authors
 
[1]    

Erhabor Osaro, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[2]    

Haruna Lukman, Department of Haematology and Blood Transfusion Science, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria.

[3]    

Emokpae Abiodun, Department of Medical Laboratory Science, Faculty of Basic Medical Sciences University of Benin, Benin City, Edo State, Nigeria.

[4]    

Adias Teddy Charles, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[5]    

Udomah Frank, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[6]    

Imoru Momodu, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[7]    

Abdulrahaman Yakubu, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[8]    

Isaac Zama, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[9]    

Onuigwe Festus Uchechukwu, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[10]    

Ahmed Marafa, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[11]    

Okwesili Augustine, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[12]    

Buhari Hauwa, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[13]    

Bagudo Ibrahim Aliyu, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[14]    

Ibrahim Kwaifa, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[15]    

Akinsola Omisakin Ibukun, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[16]    

Muhammad Alhassan, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[17]    

Dakata Ado Mohammad, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[18]    

Kabir Sulaiman Muhammad, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[19]    

Megudu Jessy Thomas, Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

[20]    

Aghedo Festus, Department of Haematology and Blood Transfusion Science, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria.

[21]    

Ikhuenbor Dorcas, Department of Haematology and Blood Transfusion Science, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria.

[22]    

Erhabor Tosan, Medical Laboratory Science Council of Nigeria, Abuja, Nigeria.

 
Abstract
 

About 90 million units of red blood are transfused worldwide yearly. Transfusion of red cell saves lives enabling complex haemorrhage prone surgeries and therapies to manage anaemia to be carried out. Challenges associated with the transfusion of allogenic blood including immunological and risk of transfusion transmissible infections. Red cells are stored at a temperature of 4 ± 2°C. At this storage temperature, it is ow possible to potentially store blood intended for transfusion for up to 42 days. However, due to red cell lesion-related challenges, stored red blood cells undergo a progressively degradation resulting in depletion of energy source to operate the physiological processes. This often affects the structural integrity of the red cell membrane, the deformability that allow it to pass through microcirculation to perfuse tissues and it fragility resulting in some level of haemolysis and the release of haemoglobin contained in its cytoplasm into the plasma. There had been an ongoing debate on whether it really matters in terms of optimum patient care what red cells transfusion a patient receives (fresh or older blood). Many have argued that the fresher the RBCs the better why others are of the opinion that there is no difference in patient outcomes between those transfused older and fresher RBCs. However, evidence seems to show that the transfusion of stored RBCs particularly those close to the end of the approved shelf life can potentially lead to morphologic changes that can potentially affect the ability of red cells to carry out the function of oxygen delivery. These changes include changes in cell shape from biconcave to spherical, increase in red cell adhesiveness to vascular endothelium, a decline in deformability and capillary flow, increased concentration of iron in the plasma due to release of free iron into the plasma due to haemolysis increasing the risk of nosocomial infections, thrombosis, vascular dysfunction, oxidative damage and associated challenge of organ failure, increased hospital stay and potential death. Transfusing fresher RBCs may benefit some patient cohorts, such as neonates, sickle cell disease, thalassaemic, septic and other severely ill patients particularly those in intensive care units while offering a limited or no benefit for the majority of other patients. Older RBCs might be given to certain patients’ groups, such as those with trauma having a major haemorrhage and extensive surgical procedures requiring large amounts of RBCs. However, many can also potentially argue that these patients may benefit most from fresher RBCs. Implementing and maintaining any policy of fresher RBCs have cost implication and may be associated with a significantly higher rate of outdating. It may also require major operational changes to the current practice of collection, storage and transfusion that can potentially affect the optimum use of scarce allogeneic blood particularly in developing countries where blood is scarce and available stock is inadequate to manage the transfusion needs of patients. There is the urgent need for the development of more optimum storage solution that can reduce the red cell lesion related challenges associated with cold storage of RBC. There is need for the shelf life of red cells to be determined and strictly regulated based on evidence on the basis of large and pragmatic clinical trials on the vitro haemolysis and in vivo recovery and survival. This will help maximize the suboptimal allogeneic stock of donor blood particularly in developing countries where there is difficulty meeting the increasing demand and transfusion needs of a vast number of patients.


Keywords
 

Pathophysiology, Consequences, Red Cell Storage, Fresh Blood, Stored Blood, Allogenic Blood, Developing Countries


Reference
 
[01]    

Orlov, D. and Karkouti K. (2015). The pathophysiology and consequences of red blood cell storage. The Association of Anesthetist of Great Britain and Ireland; 70: 29-37.

[02]    

Flegel, W. A., Natanson, C. and Klein H. G. (2014). Does prolonged storage of red blood cells cause harm? British Journal of Haematology; 165: 3–16.

[03]    

Hardwick, J. (2014). Blood storage and transportation. ISBT Science Series; 3: 177–96.

[04]    

Hess, J. R. (2010). Red cell storage. Journal of Proteomics; 73: 368–373.

[05]    

Hess, J. R. (2012). Scientific problems in the regulation of red blood cell products. Transfusion; 52: 1827–1835.

[06]    

Ross, J. F., Finch, C. A., Peacock, W. C. and Sammons, M. E. (1947). The in vitro preservation and post-transfusion survival of stored blood. Journal of Clinical Investigation; 26: 687–703.

[07]    

Zwaal, R. F. and Schroit, A. J. (1997). Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood; 89: 1121–1132.

[08]    

Wood, B. L., Gibson, D. F. and Tait, J. F. (1996). Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood; 88: 1873–1880.

[09]    

Daleke, D. L. (2008). Regulation of phospholipid asymmetry in the erythrocyte membrane. Current Opinion Hematology; 15: 191–195.

[10]    

Mitra R, Mishra N, Rath GP. (2014). Blood groups systems. Indian Journal of Anaesthesia; 58 (5): 524-528.

[11]    

Narla, M. and Patrick, G. G. (2008). Red cell membrane: past, present, and future. Blood; 112 (10): 3939–3948.

[12]    

Rand, R. P. and Burton, A. C. (1964). Mechanical properties of the red cell membrane: membrane stiffness and intracellular pressure. Biophysiology Journal; 4: 115–135.

[13]    

Mohandas, N., Chasis, J. A. and Shohet, S. B. (1983). The influence of membrane skeleton on red cell deformability: membrane material properties and shape. Seminars in Hematology; 20: 225–242.

[14]    

Mohandas, N. and Chasis, J. A. (1993). Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Seminal Hematology; 30: 171–192.

[15]    

Mohandas, N. and Evans, E. (1994). Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annual Review on Biophysiology Biomolecular Structure; 23: 787–818.

[16]    

Walensky, L. D., Mohandas, N. and Lux, S. E. (2003). In: Blood, Principles and Practice of Hematology. 2nd edition. Handin, R. I., Lux, S. E. and Stossel, T. P. editors. Philadelphia, P. A: Lippincott Williams and Wilkins: 1726–1744.

[17]    

Verkleij, A. J., Zwaal, R. F., Roelofsen, B., Comfurius, P., Kastelijn, D. and van Deenen, L. L. (1973). The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochimica Biophysica Acta; 323: 178–193.

[18]    

Fadeel, B. and Xue, D. (2009). The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Critical Reviews in Biochemistry and Molecular Biology; 44 (5): 264-277.

[19]    

Salzer, U. and Prohaska, R. (2001) Stomatin, flotillin-1 and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood; 97: 1141–1143.

[20]    

An, X., Zhang, X., Debnath, G., Baines, A. J. and Mohandas, N. (2006). Phosphatidylinositol-4, 5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4. 1 (4. 1R) with membrane proteins. Biochemistry; 45: 5725–5732.

[21]    

Harrison, T., Samuel, B. U. and Akompong, T. (2003). Erythrocyte G protein-coupled receptor signaling in malarial infection. Science; 301: 1734–1736.

[22]    

Manno, S., Takakuwa, Y. and Mohandas, N. (2002). Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability. Proceedings of National Academy Sciences U S A; 99: 1943–1948.

[23]    

Setty, B. N., Kulkarni, S. and Stuart, M. J. (2002). Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood; 99: 1564–1571.

[24]    

Voskou, S., Aslan, M., Fanis, P., Phylactides, M. and Kleanthous, M. (2015). Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biology; 6: 226-239.

[25]    

Kuypers, F. A., Yuan, J. and Lewis, R. A. (1998). Membrane phospholipid asymmetry in human thalassemia. Blood; 91: 3044–3051.

[26]    

Yasin, Z., Witting, S., Palascak, M. B., Joiner, C. H., Rucknagel, D. L. and Franco, R. S. (2003). Phosphatidylserine externalization in sickle red blood cells: associations with cell age, density and hemoglobin F. Blood; 102: 365–370.

[27]    

Murphy, S. C., Samuel, B. U. and Harrison, T. (2004). Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood; 103: 1920–1928.

[28]    

Sims, P. J. and Wiedmer, T. (2001). Unraveling the mysteries of phospholipid scrambling. Thrombosis Haemostasis; 86: 266–275.

[29]    

Discher, D. E. (2000). New insights into erythrocyte membrane organization and microelasticity. Current Opinions on Hematology; 7: 117–122.

[30]    

Palis, J., Robertson, S., Kennedy, M., Wall, C. and Keller, G. (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development; 126 (22): 5073-5084.

[31]    

Elliott, S., Pham, E. and Macdougall, I. C. (2008). Erythropoietins: a common mechanism of action. Experimental Hematology; 36 (12): 1573-1584.

[32]    

Fergusson, D. A., Hebert, P., Hogan, D. L., LeBel, L., Rouvinez-Bouali, N., Smyth, J. A., Sankaran, K., Tinmouth, A., Blajchman, M. A., Kovacs, L., Lachance, C., Lee, S., Walker, C. R., Hutton, B., Ducharme, R., Balchin, K., Ramsay, T., Ford, J. C., Kakadekar, A., Ramesh, K. and Shapiro, S. (2012). Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low birth-weight infants: the ARIPI randomized trial. Journal of the American Medical Association; 308: 1443–1451.

[33]    

Molineux, G., Foote, M. Elliott, S. Lodish, H. F., Ghaffari, S., Socolovsky, M., Tong, W., Zhang, J. (2009). Signaling by the erythropoietin receptor. In: Molineux, G. Foote, M. and Elliott, S., editors. Erythropoiesis and Erythropoietins. 2nd ed. Basel, Switzerland: Birkhauser: 155-174.

[34]    

Dolznig, H., Grebien, F. and Deiner, E. M. (2006). Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat 5 and the GR. Oncogene; 25 (20): 2890-2900.

[35]    

Shilpa, M., Hattangadi, P., Wong, L. Z., Johan, F. and Harvey, F. L. (2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood; 118: 6258-6268.

[36]    

Lin, C. S., Lim, S. K., D'Agati, V. and Costantini, F. (1996). Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes and Development; 10 (2): 154-164.

[37]    

Zhang, J., Socolovsky, M., Gross, A. W. and Lodish, H. F. (2003). Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood; 102 (12): 3938-3946.

[38]    

Eshghi, S., Vogelezang, M. G., Hynes, R. O., Griffith, L. G. and Lodish, H. F. (2007). Alpha4beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development. Journal of Cell Biology; 177 (5): 871-880.

[39]    

Zhang, J. and Lodish, H. F. (2007). Endogenous K-ras signaling in erythroid differentiation. Cell Cycle; 6 (16): 1970-1973.

[40]    

Hess, J. R., Rugg, N., Joines, A. D., Gormas, J. F., Pratt, P. G., Silberstein, E. B. and Greenwalt, T. J. (2006). Buffering and dilution in red blood cell storage. Transfusion; 46: 50–54.

[41]    

Hogman, C. F. and Meryman, H. T. (1999). Storage parameters affecting red blood cell survival and function after transfusion. Transfusion Medicine Reviews; 13: 275–296.

[42]    

Wang, D., Sun, J., Solomon, S. B., Klein, H. G. and Natanson, C. (2012). Transfusion of older stored blood and risk of death: a meta-analysis. Transfusion; 52: 1184–1195.

[43]    

Rosemary, L. S. 2012. Time to revisit red blood cell additive solutions and storage conditions: a role for “omics” analyses. Blood Transfusion; 12 (10): 7-11.

[44]    

Högman, C. F., Hedlund, K. and Sahleström, Y. (1981). Red cell preservation in protein-poor media. III. Protection against in vitro hemolysis. Vox Sanguinis; 41: 274–281.

[45]    

María García-Roa, María del Carmen Vicente-Ayuso, Alejandro M. Bobes, Alexandra C. Pedraza, Ataúlfo González-Fernández, María Paz Martín, Isabel Sáez, Jerard Seghatchian, Laura Gutiérrez (2017). Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus; 15 (3): 222–231

[46]    

Glynn, S. A. (2010). The red cell storage lesion: a method to the madness. Transfusion; 50: 1164–1169.

[47]    

Greer, P. (2014). Wintrobe’s Clinical Hematology. 13th edn. Philadelphia, P. A., Lippincott Williams and Wilkins Publishers.

[48]    

Meryman, H. T., Hornblower, M. and Keegan, T. (1991). Refrigerated storage of washed red cells. Vox Sanguinis; 60: 88–98.

[49]    

Dumont, L. J. and AuBuchon, J. P. (2008). Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion; 48: 1053–1060.

[50]    

Raval, J. S., Fontes, J., Banerjee, U., Yazer, M. H., Mank, E. and Palmer, A. F. (2013). Ascorbic acid improves membrane fragility and decreases haemolysis during red blood cell storage. Transfusion Medicine; 23: 87–93.

[51]    

van de Watering LM (2013). Age of blood: does older blood yield poorer outcomes? Curr Opin Hematol; 20 (6): 526-532.

[52]    

D’Alessandro A, Liumbruno G, Grazzini G, Zolla L. (2010). Red blood cell storage: the story so far. Blood Transfusion; 8 (2): 82-88.

[53]    

Moroff, G., Holme, S., Keegan, T. and Heaton, A. (1990). Storage of ADSOL-preserved red cells at 2. 5 and 5. 5 degrees C: comparable retention of in vitro properties. Vox Sanguinis; 59: 136–139.

[54]    

Zehnder, L., Schulzki, T., Goede, J. S., Hayes, J. and Reinhart, W. H. (2008). Erythrocyte storage in hypertonic (SAGM) or isotonic (PAGGSM) conservation medium: influence on cell properties. Vox Sanguinis; 95: 280–287.

[55]    

Otani, T., Oki, K., Akino, M., Tamura, S., Naito, Y., Homma, C., Ikeda, H. and Sumita, S. (2012). Effects of helicopter transport on red blood cell components. Blood Transfusion; 10: 78–86.

[56]    

UK Legislation (2005). The Blood Safety and Quality Regulations 2005. Statutory Instruments 2005 No. 50. Health and Safety.

[57]    

Holme S. (2005). Current issues related to the quality of stored RBCs. Transfus Apher Sci; 33: 55–61.

[58]    

Hébert, P. C., Wells, G. and Blajchman, M. A. (1999). A multicenter randomized controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials. New England Journal Medication; 340 (6): 409–417.

[59]    

Sanjeev, S., Poonam, S., and Lisa, N. T. (2011). Transfusion of Blood and Blood Products Indications and Complications. American Family Physician; 83 (6): 719-724.

[60]    

King, K. E. and Bandarenko, N. (2008). Blood Transfusion Therapy: A Physician's Handbook. 9th ed. Bethesda, Md.: American Association of Blood Banks: 236.

[61]    

Liumbruno GM, AuBuchon JP (2010). Old blood, new blood or better stored blood? Blood Transfusion; 8 (4): 217-219.

[62]    

Institute of Medicine (US) Forum on Blood Safety and Blood Availability; Dauer EA, editor. Blood Banking and Regulation: Procedures, Problems, and Alternatives. Washington (DC): National Academies Press (US); 1996. FDA Policy and Regulation.

[63]    

Willy, C., Reithmeier, W., Kuhlmann, W. D., Gerngross, H. and Flegel, W. A. (2000). Leukocyte depletion of red cell components prevents exposure of transfusion recipients to neutrophil elastase. Vox Sanguinis; 78: 19–27.

[64]    

Hill, H. R., Oliver, C. K., Lippert, L. E., Greenwalt, T. J. and Hess, J. R. (2001). The effects of polyvinyl chloride and polyolefin blood bags on red blood cells stored in a new additive solution. Vox Sanguinis; 81: 161–166

[65]    

UK Blood Transfusion and Tissue Transplantation Services (2013). Guidelines for the Blood Transfusion Services in the United Kingdom, 8th edn. The Stationary Office, London.

[66]    

Luban, N., Rais-Bahrami, K. and Short, B. (2006). I want to say one word to you - just one word - “plastics”. Transfusion; 46: 503–506.

[67]    

Sakakibara, T. and Juji, T. (1986). Post-transfusion graft-versus-host disease after open heart surgery. Lancet; 2: 1099.

[68]    

Tinmouth, A., Fergusson, D., Yee, I. C. and Hebert, P. C. (2006). Clinical consequences of red cell storage in the critically ill. Transfusion; 46: 2014-2027.

[69]    

Bose. N., Kanzariya, H. (2014). Role of therapeutic apheresis and phlebotomy techniques in anaesthesia and critical care. Indian Journal of Anaesthesia; 58 (5): 672-678.

[70]    

Klein, H. G., Spahn, D. R. and Carson, J. L. (2007). Red blood cell transfusion in clinical practice. Lancet; 370: 415-426.

[71]    

Bonaventura, C., Henkens, R., Alayash, A. I., Banerjee, S., Crumbliss, A. L. (2013). Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin. Antioxidants & Redox Signaling; 18 (17): 2298-2313.

[72]    

Pereira A. (2013). Will clinical studies elucidate the connection between the length of storage of transfused red blood cells and clinical outcomes? An analysis based on the simulation of randomized controlled trials. Transfusion; 53: 34-40.

[73]    

Hess, J. R. (2014). Measures of stored red blood cell quality. Vox Sanguinis; 107: 1-9.

[74]    

Ruddell, J. P., Lippert, L. E., Babcock, J. G. and Hess, J. R. (1998). Effect of 24-hour storage at 25 degrees C on the in vitro storage characteristics of CPDA-1 packed red cells. Transfusion; 38: 424-428.

[75]    

Flatt, J. F., Bawazir, W. M. and Bruce, L. J. (2014). The involvement of cation leaks in the storage lesion of red blood cells. Frontiers in Physiology; 5: 214.

[76]    

Minetti, G., Ciana, A. and Profumo, A. (2001). Cell age-related monovalent cations content and density changes in stored human erythrocytes. Biochimica et Biophysica Acta; 1527: 149-155.

[77]    

Luten, M., Roerdinkholder-Stoelwinder, B., Schaap, N. P., de Grip, W. J., Bos, H. J. and Bosman, G. J. (2008). Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods. Transfusion; 48: 1478-1485.

[78]    

Elfath, M. D. (2006). Is it time to focus on preserving the functionality of red blood cells during storage? Transfusion; 46: 1469-1470.

[79]    

Almizraq, R., Tchir, J. D., Holovati, J. L. and Acker, J. P. (2013). Storage of red blood cells affects membrane composition, microvesiculation, and in vitro quality. Transfusion; 53: 2258-2267.

[80]    

Sawant RB, Jathar SK, Rajadhyaksha SB, Kadam PT (2007). Red cell hemolysis during processing and storage. Asian Journal of Transfusion Science; 1 (2): 47-51.

[81]    

Tinmouth, A., Fergusson, D., Yee, I. C. and Hebert, P. C. (2006). Clinical consequences of red cell storage in the critically ill. Transfusion; 46: 2014–2027.

[82]    

Buehler, P. W., Karnaukhova, E., Gelderman, M. P. and Alayash, A. L. (2011). Blood aging, safety, and transfusion: capturing the radical menace. Antioxidants & Redox Signaling; 14: 1713–1728.

[83]    

Garcia-Santos, D., Schranzhofer, M. and Horvathova, M. (2014). Heme oxygenase 1 is expressed in murine erythroid cells where it controls the level of regulatory heme. Blood; 123: 2269–2277.

[84]    

Rifkind, J. M., Mohanty, J. G., Nagababu, E. (2014). The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Frontiers in Physiology; 5: 500.

[85]    

Umbreit, J. (2007). Methemoglobin – it’s not just blue: a concise review. American Journal of Hematology; 82: 134–144.

[86]    

Kanias, T. and Acker, J. P. (2010). Biopreservation of red blood cells–the struggle with hemoglobin oxidation. FEBS Journal; 277: 343–356.

[87]    

Reeder, B. J. (2010). The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxidants & Redox Signaling; 13: 1087–1123.

[88]    

Yoshida T. and Shevkoplyas, S. S. (2010). Anaerobic storage of red blood cells. Blood Transfusion; 8: 220–236.

[89]    

Balagopalakrishna, C., Manoharan, P. T., Abugo, O. O. and Rifkind, J. M. (1996). Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry; 35: 6393–6399

[90]    

Jozwik, M., Jozwik, M., Jozwik, M., Szczypka, M., Gajewska, J. and Laskowska-Klita, T. (1997). Antioxidant defence of red blood cells and plasma in stored human blood. Clinica Chimica Acta; 267: 129–142.

[91]    

Mohanty, J. G., Nagababu, E. and Rifkind, J. M. (2014). Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Frontiers in Physiology; 5: 84.

[92]    

Kriebardis, A. G., Antonelou, M. H., Stamoulis, K. E., Economou-Petersen, E., Margaritis, L. H. and Papassideri, I. S. (2007). Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. Journal of Cellular and Molecular Medicine; 11: 148–155.

[93]    

Antonelou, M. H., Kriebardis, A. G. and Papassideri, I. S. (2010). Aging and death signaling in mature red cells: from basic science to transfusion practice. Blood Transfusion; 8 (3): 39–47.

[94]    

Flatt JF, Bawazir WM, Bruce LJ. (2014). The involvement of cation leaks in the storage lesion of red blood cells. Frontiers in Physiology; 5: 214.

[95]    

Karon, B. S., van Buskirk, C. M., Jaben, E. A., Hoyer, J. D. and Thomas, D. D. (2012). Temporal sequence of major biochemical events during blood bank storage of packed red blood cells. Blood Transfusion; 10: 453–461.

[96]    

Collard, K., White, D. and Copplestone, A. (2014). The influence of storage age on iron status, oxidative stress and antioxidant protection in paediatric packed cell units. Blood Transfusion; 12: 210–219.

[97]    

Salzer, U., Zhu, R. and Luten, M. (2008). Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion, 48: 451–462

[98]    

Hentschel, W. M., Wu, L. L. and Tobin, G. O. (1986). Erythrocyte cation transport activities as a function of cell age. Clinica Chimica Acta; 157: 33–43.

[99]    

Bosman, GJ. (2013). Survival of red blood cells after transfusion: processes and consequences. Frontiers in Physiology; 4: 376.

[100]    

Liu, C., Zhao, W., Christ, G. J., Gladwin, M. T. and Kim-Shapiro, D. B. (2013). Nitric oxide scavenging by red cell microparticles. Free Radical Biology and Medicine; 65: 1164–1173.

[101]    

Donadee, C., Raat, N. J. and Kanias, T. (2011). Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation; 124: 465–476.

[102]    

Uchida, I., Tashiro, C., Koo, Y. H., Mashimo, T. and Yoshiya, I. (1990). Carboxyhemoglobin and methemoglobin levels in banked blood. Journal of Clinical Anesthesia; 2: 86–90.

[103]    

Marwah, S. S., Blann, A. and Harrison, P. (2002). Increased non-transferrin bound iron in plasma-depleted SAG-M red blood cell units. Vox Sanguinis; 82: 122–126.

[104]    

Yaddanapudi S, Yaddanapudi L. (2014). Indications for blood and blood product transfusion. Indian Journal of Anaesthesia; 58 (5): 538-542.

[105]    

Luten, M., Roerdinkholder-Stoelwinder, B., Schaap, N. P., de Grip, W. J., Bos, H. J. and Bosman, G. J. (2008). Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods. Transfusion; 48: 1478–1485.

[106]    

Ferraris, V. A., Ferraris, S. P. and Saha, S. P. (2007). Perioperative blood transfusion and blood conservation in cardiac surgery: The Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists clinical practice guideline. Annals of Thoracic Surgery; 83 (5): 27–86.

[107]    

Whyte, R. K., Jefferies, A. L., Canadian Paediatric Society, Fetus and Newborn Committee. (2014). Red blood cell transfusion in newborn infants. Paediatrics & Child Health; 19 (4): 213-217.

[108]    

Carless, P. A., Henry, D. A., Carson, J. L., Hebert, P. P., McClelland, B. and Ker, K. (2010). Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Systematic Reviews; (10): CD002042.

[109]    

Lacroix, J., Hébert, P. C. and Hutchison, J. S. (2007). TRIPICU Investigators; Canadian Critical Care Trials Group; Pediatric Acute Lung Injury and Sepsis Investigators Network. Transfusion strategies for patients in pediatric intensive care units. New England Journal Medication; 356 (16): 1609–1619.

[110]    

Willy, A., Flegel, C. N. and Harvey, G. K. (2014). Does prolonged storage of red blood cells cause harm? British Journal of Haematology; 12747: 1- 10.

[111]    

Vamvakas, E. C. (2007). Why have meta-analyses of randomized controlled trials of the association between non-white-blood-cell-reduced allogeneic blood transfusion and postoperative infection produced discordant results? Vox Sanguinis; 93: 196–207.

[112]    

Paul, E. A., Barty, R., Yutong, F., Per Olav, V., Menaka, P., Reed, A. C. S., Nancy, M. H., Neil, B., Shelley, L. M., Jianping, L., John, W. E. and Gordon, H. G. (2015). Transfusion of fresher vs older red blood cell in hospitalized patients: a systemic review and meta-analysis. Blood; 127: 400-409.

[113]    

Lelubre, C. and Vincent, J. L. (2013). Relationship between red cell storage duration and outcomes in adults receiving red cell transfusions: a systematic review. Critical Care; 17: 66.

[114]    

Koch, C. G., Li, L. and Sessler, D. I. (2008). Duration of red-cell storage and complications after cardiac surgery. New England Journal of Medicine; 358: 1229-1239.

[115]    

Bragin, D. E., Statom, G. L., Hagberg, S., Nemoto, E. M. (2015). Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain. J Neurosurg; 122 (5): 1239-1247.

[116]    

Qu, L. and Triulzi, D. J. (2015). Clinical effects of red blood cell storage. Cancer Control; 22 (1): 26-37.

[117]    

Grimshaw, K., Sahler, J., Spinelli, S. L., Phipps, R. P. and Blumberg, N. (2011). New frontiers in transfusion biology: identification and significance of mediators of morbidity and mortality in stored red blood cells. Transfusion; 51 (4): 874-880.

[118]    

Khan, S. Y., Kelher, M. R. and Heal, J. M. (2006). Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood; 108 (7): 2455-2462.

[119]    

Middelburg, R. A., van de Watering, L. M., Briet, E. and van der Bom, J. G. (2013). Storage time of red blood cells and mortality of transfusion recipients. Transfusion Medicine Review; 27 (1): 36-43.

[120]    

Wilkinson, K. L., Brunskill, S. J., Doree, C., Hopewell, S., Stanworth, S., Murphy, M. F. and Hyde, C. (2011). The clinical effects of red blood cell transfusions: an overview of the randomized controlled trials evidence base. Transfusion Medicine Reviews; 25: 145–155.

[121]    

Fergusson, D. A., Hebert, P., Hogan, D. L., LeBel, L., Rouvinez-Bouali, N., Smyth, J. A., Sankaran, K., Tinmouth, A., Blajchman, M. A., Kovacs, L., Lachance, C., Lee, S., Walker, C. R., Hutton, B., Ducharme, R., Balchin, K., Ramsay, T., Ford, J. C., Kakadekar, A., Ramesh, K. and Shapiro, S. (2012). Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low birth-weight infants: the ARIPI randomized trial. Journal of the American Medical Association; 308: 1443–1451.

[122]    

Kennedy, M. S. (2011). Perinatal issues in transfusion practice. In: Roback, J. D., Grossman, B. J., Harris, T. and Hillyer, C. D. (editors). Technical Manual. Bethesda: 631-644.

[123]    

Juffermans NP, Vlaar APJ, Prins DJ, et al. (2012). Age of red blood cells is associated with bacterial infections in critically ill trauma patients. Blood Transfus; 10: 290–295.

[124]    

Kor, D. J., Kashyap, R. and Weiskopf, R. B. (2012). Fresh red blood cell transfusion and short-term pulmonary, immunologic and coagulation status: a randomized clinical trial. American Journal Respiratory Critical Care Medicine; 185: 842-850.

[125]    

Yap, C. H., Lau, L. and Krishnaswamy, M. (2008). Age of transfused red cells and early outcomes after cardiac surgery. Annals of Thoracic Surgery 2008; 86: 554-559

[126]    

Vamvakas EC (2002). Meta-analysis of randomized controlled trials investigating the risk of postoperative infection in association with white blood cell-containing allogeneic blood transfusion: the effects of the type of transfused red blood cell product and surgical setting. Transfus Med Rev; 16 (4): 304-314.

[127]    

Hod, E. A., Brittenham, G. M., Billote, G. B., Francis, R. O., Ginzburg, Y. Z., Hendrickson, J. E., Jhang, J., Schwartz, J., Sharma, S., Sheth, S., Sireci, A. N., Stephens, H. L., Stotler, B. A., Wojczyk, B. S., Zimring, J. C. and Spitalnik, S. L. (2011). Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron. Blood; 118: 6675–6682.

[128]    

Fernandes da Cunha, D. H., Nunes Dos Santos, A. M., Kopelman, B. I., Areco, K. N., Guinsburg, R., de Araujo, P. C., Chiba, A. K., Kuwano, S. T., Terzian, C. C. and Bordin, J. O. (2005). Transfusions of CPDA-1 red blood cells stored for up to 28 days decrease donor exposures in very low-birth-weight premature infants. Transfusion Medicine; 15: 467–473.

[129]    

van de Watering, L. M., Lorinser, J., Versteegh, M., Westendord, R. and Brand, A. (2006). Effects of storage time of red blood cell transfusions on the prognosis of coronary artery bypass graft patients. Transfusion; 46: 1712–1718.

[130]    

Cohen, B. and Matot, I. (2013). Aged erythrocytes: a fine wine or sour grapes? BJA: British Journal of Anaesthesia; 111 (1): i62–i70.

[131]    

Aubron, C., Nichol, A., Cooper, D. J. and Bellomo, R. (2013). Age of red blood cells and transfusion in critically ill patients. Annals of Intensive Care; 3: 2–3.

[132]    

Janz, D. R., Zhao, Z., Koyama, T., May, A. K., Bernard, G. R., Bastarache, J. A., Young, P. P. and Ware, L. B. (2013). Longer storage duration of red blood cells is associated with an increased risk of acute lung injury in patients with sepsis. Annals of Intensive Care; 3: 33.

[133]    

Edgren, G., Kamper-Jorgensen, M. and Eloranta, S. (2010). Duration of red blood cell storage and survival of transfused patients (CME). Transfusion; 50: 1185-1195

[134]    

Eikelboom, J. W., Cook, R. J., Liu, Y. and Heddle, N. M. (2010). Duration of red cell storage before transfusion and in-hospital mortality. American Heart Journal; 159: 737–743.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership