ISSN Print: 2381-1331  ISSN Online: 2381-134X
AASCIT Journal of Environment  
Manuscript Information
 
 
Anomalous Occurrence of Cretaceous Placer Deposits: A Review
AASCIT Journal of Environment
Vol.2 , No. 1, Publication Date: Jun. 6, 2017, Page: 1-13
3594 Views Since May 13, 2016, 1654 Downloads Since May 13, 2016
 
 
Authors
 
[1]    

Timothy Bata, Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen, U.K.; Department of Applied Geology, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

[2]    

John Parnell, Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen, U.K..

[3]    

Nuhu K. Samaila, Department of Applied Geology, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

[4]    

Ahmed I. Haruna, Department of Applied Geology, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

 
Abstract
 

During the Cretaceous, the CO2 content of the global atmosphere drastically increased in response to volcanism associated with the disintegration of the former continents. This increase in the global atmospheric CO2 level subsequently led to a considerable rise in global temperatures. The interaction among the high levels of atmospheric CO2, extreme global warmth, and humidity witnessed in the Cretaceous implies extreme environmental conditions, which involved a possibly more acidic and chemically destructive atmosphere than at present; these conditions are believed to have favoured widespread deep weathering at that time. Economically important minerals were reworked from their primary sources during these Cretaceous weathering events. The extreme global warmth witnessed in the Cretaceous also caused the melting of most of the polar ice caps, resulting in the expansion of the volume of Cretaceous seawaters, which subsequently led to a significant rise in the global sea level. Extensive palaeo-seaways played a vital role in transporting and depositing the huge volume of sediments generated during the Cretaceous weathering events, which included economically important minerals (e.g., gold, diamond, and platinum). These mineral deposits are now preserved in Cretaceous sands as placer deposits. Three categories of Cretaceous placer deposits can be distinguished: those occurring in Cretaceous sands resting unconformably on the Precambrian basement, those occurring in Cretaceous sands resting unconformably on the Palaeozoic rocks, and those occurring in Cretaceous sands that unconformably overlay Mesozoic strata.


Keywords
 

Palaeogeography, Cretaceous Greenhouse Climate, Placer Deposits, Gold, Diamond, Platinum


Reference
 
[01]    

Scotese, C. R., 2001. Atlas of Earth history. Paleogeography, PALEOMAP Project, Arlington, Texas, Volume 1, p. 52.

[02]    

Golonka, J., 2007. Late Triassic and early Jurassic palaeogeography of the world. Palaeogeogr. Palaeocl. 244, 297–307.

[03]    

Blakey, R. C., 2011. Global paleogeography. http://jan.ucc.nau.edu/~rcb7/globaltext2.html.

[04]    

Larson, R. L., 1991. Geological consequences of superplumes. Geology 19, 963–966.

[05]    

Frakes, L. A., Francis, J. E., Syktus, J., 1992. Climate modes of the Phanerozoic, 285 pp. Cambridge University Press, New York.

[06]    

Francis, J. E., Frakes, L. A., 1993. Cretaceous climates. In: Wright, Paul (Ed.), Sedimentology Review/1. Blackwell Scientific Publications, Oxford, pp. 17–30.

[07]    

Herman, A. B., Spicer, R. A., 1996. Paleobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380, 330–333.

[08]    

Cojan, L., Moreau, M.-G., Stott, L., 2000. Stable isotope stratigraphy of the Paleogene pedogenic series of southern France as a basis for continental-marine correlation. Geology 28, 259–262.

[09]    

Berner, R. A., Kothavala, Z., 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301, 182–204.

[10]    

Bice, K. L., Norris, R. D., 2002. Possible atmospheric CO2 extremes of theMiddle Cretaceous (late Albian–Turonian). Paleoceanography 17, 1070. doi: 10.1029/2002PA000778.

[11]    

Bice, K. L., Huber, B. T., Norris, R. D., 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography 18 (2), 1031. doi: 10.1029/2002PA000848.

[12]    

Jenkyns, H. C., Forster, A., Schouten, S., Damsté, J. S. S., 2004. High temperatures in the late Cretaceous Arctic Ocean. Nature 432, 888–892.

[13]    

Hay, W. W., 2008. Evolving ideas about the Cretaceous climate and ocean Circulation. Cretaceous Research, 29, 725–753.

[14]    

Rabassa, J., 2010, Gondwana Paleolandscapes: Long-Term Landscape Evolution, Genesis, Distribution And Age. Geociências, 29 (4), 541–570.

[15]    

Rabassa, J., Carignano, C., and Cioccale, M., 2011, Gondwana Paleosuperficies En Argentina: Una Introducción: Geociências, 29, 439–466.

[16]    

Bata, T., 2016. Evidence of widespread Cretaceous deep weathering and it consequences. Earth Sci. Resea. 5(2), 69-84. http://www.ccsenet.org/journal/index.php/esr/article/view/58112

[17]    

Rasmussen, C., and Brantley, S., 2011, Strong climate and tectonic control on plagioclase weathering in granitic terrain. Earth Planet. Sci. Lett. 301, 521–530.

[18]    

Goudie, A. S., Viles, H. A., 2012. Weathering and the global carbon cycle: geomorphological perspectives. Earth Sci. Rev. 113, 59–71.

[19]    

White, A. F., and Blum, A. E., 1995, Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Ac. 59, 1729–1747.

[20]    

Dessert, C., Dupré, B., Gaillardet, J., François, L. M., Allègre, C. J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273.

[21]    

Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Karjilov, M. I., Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir, J., 2009. Direct evidence of the feedback between climate and weathering. Earth Planet. Sci. Lett. 277, 213–222.

[22]    

Best, J. L., Brayshaw, A. C., 1985. Flow separation—a physical process for the concentration of heavy minerals within alluvial channels. J. Geol. Soc. 142, 747–755.

[23]    

Veizer, J., Godderis, Y., François, L. M., 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701.

[24]    

Ronov, A. B., 1994. Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. Am. J. Sci. 294, 777–801.

[25]    

Haq, B. U., Schutter, S. R., 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–68.

[26]    

Goddéris, Y., Donnadieu, Y. Le Hir, G., Lefebvre, V., Nardin, E., 2014. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and Climate. Earth-Science Reviews 128, 122–138.

[27]    

Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J., Beerling, D. J., 2004. CO2 as a primary driver of Phanerozoic climate. GSA today 14, 4–10.

[28]    

Royer, D. L., 2008. Linkages between CO2, climate, and evolution in deep time. Proceedings of the National Academy of Sciences, 105, 407–408.

[29]    

Royer, D. L., 2010. Fossil soils constrain ancient climate sensitivity. Proceedings of the National Academy of Sciences, 107, 517–518.

[30]    

Skelton, P. W., 2003. The Cretaceous World. Cambridge University Press, London.

[31]    

Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., Lin, Z., 2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Science Reviews 129, 136–147.

[32]    

Coe, M. T., Costa, M. H., Botta, A. L., Birkett, C., 2002. Long-term simulations of discharge and floods in the Amazon Basin. Journal of Geophysical Research 107 (D20), 8044. doi: 10.1029/2001JD000740.

[33]    

Huber, B. T., Hodell, D. A., Hamilton, C. P., 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107, 1164–1191.

[34]    

Friedrich, O., Norris, R. D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans-A 55 my record of Earth’s temperature and carbon cycle. Geology 40, 107-110.

[35]    

Larsen, M., Knudsen, C., Frei, D., Frei, M., Rasmussen, T., Whitham, A. G., 2006. East Greenland and Faroe–Shetland sediment provenance and Palaeogene sand dispersal systems. Geol. Surv. Den. Greenl. Bull. 10, 29–32.

[36]    

Meinhold, G., Morton, A. C., Fanning, C. M., Frei, D., Howard, J. P., Phillips, R. J., Strogen, D., Whitham, A. G., 2011. Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet. Sci. Lett. 312, 164–175.

[37]    

Benyon, C., Leier, A., Leckie, D. A., Webb, A., Hubbard, S. M., Gehrels, G., 2014. Provenance of the Cretaceous Athabasca Oil Sands, Canada: Implications for continental-scale sediment transport. J. Sediment. Res. 84, 136–143.

[38]    

Finzel, E. S., 2014. Detrital zircons from Cretaceous midcontinent strata reveal an Appalachian Mountains–Cordilleran foreland basin connection. Lithosphere, 6, 378–382.

[39]    

Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Pekar, S. F., 2005. The Phanerozoic record of global sea-level change. Science, 310 (5752), 1293–1298.

[40]    

Ronov, A. B., Khain, V. E., and Balukhovsky, A. N., 1989, Atlas of lithological paleogeographical maps of the world: Mesozoic and Cenozoic of continents and oceans, Barsukov, V. L., and Laviorov, N. P., eds.: Moscow, Editorial Publishing Group VNII Zarubezh-geologia, p. 79.

[41]    

Craw, D., Youngson, J. H., Leckie, D. A., 2006. Transport and concentration of detrital gold in foreland basins. Ore Geol. Rev. 28, 417–430.

[42]    

Burke, K., Kidd, W. S., Kusky, T. M., 1986. Archean foreland basin tectonics in the Witwatersrand Basin, South Africa. Tectonics 5, 439–456.

[43]    

Coward, M. P., Spencer, R. M., Spencer, C. E., 1995. Development of the Witwatersrand Basin, South Africa. In: Coward, M. P., Ries, A. C. (Eds.), Early Precambrian Processes, Geological Society Special Publication, vol. 95, 243–269.

[44]    

Botros, N. S., 2004. A new classification of the gold deposits of Egypt. Ore Geol. Rev. 25, 1–37.

[45]    

Dill, H. G., 2008. Geogene and anthropogenic controls on the mineralogy and geochemistry of modern alluvial–(fluvial) gold placer deposits in man-made landscapes in France, Switzerland and Germany. J. Geochem. Explor. 99, 29–60.

[46]    

Zientek, M. L., Pardiarto, B., Simandjuntak, H. R. W., Wikrama, A., Oscarson, R. L., Meier, A. L., Carlson, R. R., 1992. Placer and lode platinum‐group minerals in South Kalimantan, Indonesia: Evidence for derivation from Alaskan‐type ultramafic intrusions. Aust. J. Earth Sci. 39, 405–417.

[47]    

Grayson R., Baatar Tumenbayar, M. B. Baasandorj A., 2000 Platinum and Gold Placers of Late Cretaceous and Quaternary age in the Gobi Desert, Mongolia. World Placer Journal, pp. 129–133.

[48]    

Youngson, J. H., Craw, D., Falconer, D. M., 2006. Evolution of Cretaceous–Cenozoic quartz pebble conglomerate gold placers during basin formation and inversion, southern New Zealand. Ore Geol. Rev. 28, 451–474.

[49]    

Woakes, M., Rahaman, M. A., Ajibade, A. C., 1987. Some metallogenetic features of the Nigerian basement. J. Afr. Earth Sci. 6, 655–664.

[50]    

Nesterenko, G. V., Kolpakov, V. V., 2010. Allochthonous native gold in piedmont alluvium in the southern West Siberia. Lithol. Miner. Resour. 45, 425–442.

[51]    

Patyk-Kara, N. G., Gorelikova, N. V., and Bardeeva, E. G., 2004. Formation history of the Tsentral’noe titanium–zirconium sand deposit in the European part of Russia, Litol. Polezn. Iskop. 6, 585–601.

[52]    

Matukhin, R. G., Boiko, N. I., 2011. Paragenesis of upper cretaceous titanium-zirconium placers and phosphate mineralization in the southern East European Platform. Lithology and Mineral Resources 46, 301–304.

[53]    

Bond, D. P., Chapman, R. J., 2006. Evaluation of the origins of gold hosted by the conglomerates of the Indian River formation, Yukon, using a combined sedimentological and mineralogical approach. Yukon Exploration and Geology, 93–103.

[54]    

Love, J. D., 1973. Harebell Formation (Upper Cretaceous) and Pinyon Conglomerate (uppermost Cretaceous and Paleocene), northwestern Wyoming Geological Survey Professional paper 734-A US Govt. Print. Off.

[55]    

Church, S. E., Kelley, J. S., Bohn, D., 1980. Mineral Resource Assessment of the Chandler Lake Quadrangle, Alaska. U.S. Geological Survey, Miscellaneous Field Studies, Map MF-2144-E, 37P.

[56]    

Woodsworth, G. J., Anderson, R. G., Armstrong, R. L., 1991. Plutonic regimes. In: Gabrielse, H., Yorath, C. J. (Eds.), Geology of the Cordilleran Orogen, Geological Survey of Canada, Geology of Canada, vol. 4, 491–531.

[57]    

Yorath, C. J., 1991. Upper Jurassic to Paleogene assemblages. Chapter 9. In: Gabrielse, H., Yorath, C. J. (Eds.), Geology of the Cordilleran Orogen, Geological Survey of Canada, Geology of Canada, vol. 4, 329–371.

[58]    

Leckie, D. A., Craw, D., 1995. Westerly-derived early Cretaceous gold paleoplacers in the Western Canada foreland basin, southwest Alberta: tectonic and economic implications. Can. J. Earth Sci. 32, 1079–1092.

[59]    

Craw, D., Leckie, D. A., 1996. Tectonic controls on dispersal of gold into a foreland basin: an example from the western Canada foreland basin. J. Sediment. Res. A Sediment. Petrol. Process. 66, 559–566.

[60]    

Clifford, T., N., 1966. Tectono-metallogenic units and metallogenic provinces of Africa. Earth Planet. Sci. Lett. 1, 421–434.

[61]    

Mitchell, R. H., 1989. Aspects of the petrology of kimberlites and lamproites: some definitions and distinctions, In: Ross, J., et al. (eds.) Kimberlites and related rocks: their composition, occurrence, origin and emplacement, Volume 1: Sydney, Blackwell Scientific Publications, p. 7–4.

[62]    

Mitchell, R. H., 1995. Kimberlites, orangeites, and related rocks. Plenum Press, New York, 410 pp.

[63]    

Mitchell, R., H., 2008. Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J. Volcanol. Geotherm. Rese. 174, 1–8.

[64]    

Godard, G., Chabou, M. C., Adjerid, Z., Bendaoud, A., 2014. First African diamonds discovered in Algeria by the ancient Arabo-Berbers: History and insight into the source rocks. Comptes Rendus Geoscience, 346, 179-189.

[65]    

Kaminsky, F., Konyukhov, Y. I., Verzhak, V. V., Khamani, M., Khenni, A., 1990. Diamonds from the Algerian Sahara [in Russian]. Mineralogicheskiy Zh. [Kiev] 12, 76–80.

[66]    

Thomas, M. F. H., Bodin, S., Redfern, J., Irving, D. H. B., 2010. A constrained African craton source for the Cenozoic Numidian Flysch: implications for the palaeogeography of the western Mediterranean basin. Earth Sci. Rev. 101, 1–23.

[67]    

Janse, A. B., Sheahan, P. A., 1995. Catalogue of worldwide diamond and kimberlite occurrences: a selective and annotative approach. J. Geochem. Explor. 53, 73–111.

[68]    

Chirico, P. G., Barthelemy, F., Ngbokoto, F. A., 2010. Alluvial diamond resource potential and production capacity assessment of the Central African Republic. U.S. Geological Survey Scientific Investigations Report 2010–5043. http://pubs.usgs.gov/sir/2010/5043/.

[69]    

Schlüter, T., 2006. Geological atlas of Africa, with notes on stratigraphy, tectonics, economic geology, geohazards and geosites of each country. Springer, Berlin, 272 p.

[70]    

Malingbar, A., Lang, J., Buoncristiani, J.-F., and Censier, C., 2006. The Mouka-Ouadda Formation, a Cretaceous fluviatile environment in the Eastern part of the Central African Republic. Afr. Geosci. Rev. 13, 301–322.

[71]    

Censier, C., 1996. Alluvial diamond deposits in the Central African Republic. Afr. Geosc. Rev. 3, 217–230.

[72]    

Giresse, Pierre, 2005. Mesozoic – Cenozoic history of the Congo Basin. Journal of African Earth Sciences, 43, 301–315.

[73]    

Dempster, A., and Tutusaus, J. P., 1995. Project d’elaboration d’un plan minier national de la République Centrafrique: Rapport Final – Tome 2, Annexe 9 – Brochure promotio¬nelle sur le sectuer minier centrafricain, Sécretaire d’Etat aux Finaces, au Plan et á la Cooperation Internationale, B. P. 696, Bangui: Ireland, Crowe Schaffalitzky Associates.

[74]    

De Wit, M. C., Jelsma, H. A., 2015. A Review of the Kimberlites of the Democratic Republic of Congo. In Geology and Resource Potential of the Congo Basin. Springer Berlin, Heidelberg, pp. 361–369.

[75]    

Phillips, D., Harris, J. W., 2009. Diamond provenance studies from 40 Ar/39 Ar dating of clinopyroxene inclusions: an example from the west coast of Namibia. Lithos 112, 793–805.

[76]    

De Wit, M. C. J., 1999. Post-Gondwana drainage and the development of diamond placers in western South Africa. Econ. Geol. 94, 721–740.

[77]    

Bluck, B. J., Ward, J. D., de Wit, M. C. J., 2005. Diamond mega-placers: southern Africa and the Kaapvaal craton in a global context. In: McDonald, I., Boyce, A. J., Butler, I. B., Herrington, R. J., Polya, D. A. (Eds.), Mineral deposits and Earth evolution. Geological Society of London Special Publication, vol. 248, pp. 213–245.

[78]    

Taylor, W. R., Tompkins, L. A., Haggerty, S. E., 1994. Comparative geochemistry of West African kimberlites: evidence for a micaceous kimberlite endmember of sublithospheric origin. Geochimica et Cosmochimica Acta 58, 4017–4037.

[79]    

Tompkins L. A. and Gonzaga G. M., 1989. Diamonds in Brazil and a proposed model for the origin and distribution of diamonds in the Coromandel region. Minas Gerais, Brazil. Econ. Geol. 84, 591-602.

[80]    

Svisero D. P., Meyer H. 0. A., Haralyi N. L. E. and Hasui Y., 1984. A note on the geology of some Brazilian kimberlites. J. Geol. 92, 331-338.

[81]    

Barbosa, O., 1991. Diamante no Brasil. Historico, ocorrencia, prospecclo e lavra, 136 pp. Sol. CPRM.

[82]    

Leonardos O. H., Carvalho J. B., Tallarico F. H. B., Gibson S. A., Thompson R. N., Meyer H.O.A., Dickin A. P., 1993. 0 xenolito de granada Iherzolito de 3 Ranchos 4: Uma rocha matriz do diamante na Provincia Magmatica Cretacea do Alto Paranafba, Goias. Anais I Simp. Bras. Geol. Diamante, 3-16.

[83]    

Svisero, D. P., 1995. Distribution and origin of diamonds in Brazil: an overview. J. Geodyn. 20, 493–514.

[84]    

Scott Smith, B. H., Orr, R. G., Robertshaw, P., Avery, R. W., 1994. Geology of the Fort à la Corne kimberlites, Saskatchewan. Proceedings of 6th Int. Kimberlite Conf., Novosibirsk 6, 19–24.

[85]    

Berryman, A. K., Smith, B. H. S., Jellicoe, B. C., 2004. Geology and diamond distribution of the 140/141 kimberlite, Fort à la Corne, central Saskatchewan, Canada. Lithos 76, 99–114.

[86]    

Leckie, D. A., Kjarsgaard, B. A., Bloch, J., Mc Intyre, D., Mc Neil, D., Stasiuk, L., Heaman, L., 1997. Emplacement and reworking of Cretaceous, diamond-bearing, crater facies kimberlite of central Saskatchewan, Canada. Geol. Soc. Am. Bull. 109, 1000–1020.

[87]    

Bernstein, S., Knudsen, C., Bird, D. K., Bruun, M., 2007. Placer diamonds in unconsolidated sands of the Cretaceous Atane Fm, Disko Island, West Greenland, Report of the Geological Survey of Denmark and Greenland.

[88]    

Subrahmanyam, A. V., Kumar, V. A., Desapati, T., Deshmukh, R. D., Viswanathan, G., 2005. Discovery of micro-diamonds in beach placers of the east coast, Andhra Pradesh, India. Current Science, 88, 1227-1228.

[89]    

Maier, W. D., Barnes, S. J., Campbell, I. H., Fiorentini, M. L., Peltonen, P., Barnes, S. J., Smithies, R. H., 2009. Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460, 620–623.

[90]    

Puchtel, I. S., Walker, R., Touboul, M., Nisbet, E. G., Byerly, G. R., 2014. Insights into early Earth from the Pt-Re-Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim. Cosmochim. Acta 125, 394–413.

[91]    

Lorand, J. P., Luguet, A., Alard, O., 2013. Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review. In: Mondal, S. K., Griffin, W. L., Maier, W. G. (Eds.), Ore Deposits and the Role of the Lithospheric Mantle 164–167. Lithos Special Issue, pp. 2–21.

[92]    

Fiorentini, M. L., Barnes, S. J., Lesher, C. M., Heggie, G. J., Keays, R. R., Burnham, O. M., 2010. Platinum group element geochemistry of mineralized and nonmineralized komatiites and basalts. Econ. Geol. 105, 795–823.

[93]    

Groves, D. I., Vielreicher, R. M., Goldfarb, R. J., Condie, K. C., 2005. Controls on the heterogeneous distribution of mineral deposits through time. Geological Society, London, Special Publications 248, 71–101.

[94]    

Levine, Richard, Wilburn, David, 2003. Russian PGM—Resources for 100+ years. United States Geological Survey, Open-File Report 03-059, 19pp. http://pubs.usgs.gov/of/2003/of03-259/index.html.

[95]    

Iljina, M., Hanski, E., 2002. Multimillion-ounce PGE deposits of the Portimo layered igneous complex, Finland. 9th International Platinum Symposium Abstracts, 21–25 July 2002, Billings, Montana.

[96]    

Cox, D. P., Singer, D. L. A., 1986. Mineral deposit models. U.S. Geol. Surv. Bull. 1693, 379 p.

[97]    

Hattori, K., Cabri, L. J., 1992. Origin of platinum group mineral nuggets inferred from an osmium-isotope study. Can. Mineral, 30, 289–301.

[98]    

Pašava, J., Malec, J., Griffin, W. L., González-Jiménez, J. M., 2015. Re–Os isotopic constraints on the source of platinum-group minerals (PGMs) from the Vestřev pyrope-rich garnet placer deposit, Bohemian Massif. Ore Geol. Rev. 68, 117–126.

[99]    

Huber, B. T., Norris, R. D., MacLeod, K. G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 38, 123–126.

[100]    

Rabassa, J., Carignano, C., Cioccale, M., 2014. A general overview of Gondwana landscapes in Argentina. In Gondwana Landscapes in southern South America Springer Netherlands, 201-245.

[101]    

Bata, T., Parnell, J., Samaila, N. K., Abubakar, M. B., Maigari, A. S., 2015. Geochemical evidence for a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria. Journal of African Earth Sciences, 111, 148-155.

[102]    

Meju, M. A., 2002. Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv. Geophys. 23, 133–206.

[103]    

Edwards, R., Atkinson, K., 1986. Hydrothermal vein deposits. In Ore Deposit Geology and its influence on mineral exploration. Springer Netherlands, pp. 143–174.

[104]    

Goldfarb, R. J., Phillips, C. N., Nokleberg, W. J., 1998. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geol. Rev. 13, 185–218.

[105]    

Carlson, J. A., Kirkley, M. B., Thomas, E. M., Hillier, W. D., 1999. Recent Canadian kimberlite discoveries. In: Gurney, J. J., Gurney, J. L., Pascoe, M. D., Richardson, S. H., (eds) Proceedings of the VIIth International Kimberlite Conference, Cape Town, South Africa, 1, 81–89.

[106]    

Phillips, D., Harris, J. W., 2009. Diamond provenance studies from 40 Ar/39 Ar dating of clinopyroxene inclusions: an example from the west coast of Namibia. Lithos 112, 793–805.

[107]    

Penniston-Dorland, S. C., Wing, B. A., Nex, P. A., Kinnaird, J. A., Farquhar, J., Brown, M., Sharman, E. R., 2008. Multiple sulfur isotopes reveal a magmatic origin for the Platreef platinum group element deposit, Bushveld Complex, South Africa. Geology 36, 979–982.

[108]    

Muntean, J. L., Cline, J. S., Simon, A. C., Longo, A. A., 2011. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat. Geosci. 4, 122–127.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership