ISSN Print: 2381-1234  ISSN Online: 2381-1242
AASCIT Journal of Nanoscience  
Manuscript Information
 
 
Structural-Parametric Model of Piezoactuator Nano - and Microdisplacement for Nanoscience
AASCIT Journal of Nanoscience
Vol.3 , No. 3, Publication Date: Aug. 30, 2017, Page: 12-18
13849 Views Since August 30, 2017, 3848 Downloads Since Aug. 30, 2017
 
 
Authors
 
[1]    

Sergey Mikhailovich Afonin, Department of Intellectual Technical Systems, National Research University of Electronic Technology (MIET), Moscow, Russia.

 
Abstract
 

The structural-parametric model, the parametric structural schematic diagram, the decision of the wave equation, the transfer functions of the piezoactuator for the nanoscience are obtained. The effects of geometric and physical parameters of the piezoactuator and the external load on its static and dynamic characteristics are determined. The parametric structural schematic diagram and the transfer functions of the piezoactuator for the transverse, longitudinal, shift piezoelectric effects are obtained from the structural-parametric model of the piezoactuator. For calculation of the control systems for nanotechnology with the piezoactuator it’s the parametric structural schematic diagram and the transfer functions are determined. The generalized parametric structural schematic diagram of the piezoactuator is constructed.


Keywords
 

Structural-Parametric Model, Piezoactuator, Schematic Diagram, Deformation, Generalized Transfer Functions


Reference
 
[01]    

J. Schultz, J. Ueda, H. Asada (2017) Cellular Actuators. Oxford: Butterworth-Heinemann Publisher, 382 p.

[02]    

K. Uchino (1997) Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher, 347 p.

[03]    

S. M. Afonin (2006) Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics. 73(2) 307-313, doi:10.1134/S1064562406020402.

[04]    

S. M. Afonin (2008) Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics. 53(3) 137-143, doi:10.1134/S1028335808030063.

[05]    

S. M. Afonin (2014) Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of solids. 49(2) 196-207, doi:10.3103/S0025654414020095.

[06]    

V. Talakokula, S. Bhalla, R. J. Ball, C. R. Bowen, G. L. Pesce, R. Kurchania, B. Bhattacharjee, A. Gupta, K. Paine (2016) Diagnosis of carbonation induced corrosion initiation and progressionin reinforced concrete structures using piezo-impedance transducers. Sensors and Actuators A: Physical. 242 79-91, doi: 10.1016/j.sna.2016.02.033.

[07]    

W. G. Cady (1946) Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company, 806 p.

[08]    

W. Mason, editor (1964) Physical Acoustics: Principles and Methods. Vol.1. Part A. Methods and Devices. New York: Academic Press. 515 p.

[09]    

Y. Yang, L. Tang (2009) Equivalent circuit modeling of piezoelectric energy harvesters. Journal of intelligent material systems and structures. 20(18) 2223-2235.

[10]    

D. Zwillinger (1989) Handbook of Differential Equations. Boston: Academic Press. 673 p.

[11]    

S. M. Afonin (2015) Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Parinov I. A., editor. New York: Nova Science, pp. 225-242.

[12]    

S. M. Afonin (2005) Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady physics. 50(2) 77-82, doi:10.1134/1.1881716.

[13]    

S. M. Afonin (2002) Parametric structural diagram of a piezoelectric converter. Mechanics of solids. 37(6) 85-91.

[14]    

S. M. Afonin (2011) Electromechanical deformation and transformation of the energy of a nano-scale piezomotor. Russian engineering research. 31(7) 638-642, doi:10.3103/S1068798X11070033.

[15]    

S. M. Afonin (2011) Electroelasticity problems for multilayer nano- and micromotors. Russian engineering research. 31(9) 842-847, doi:10.3103/S1068798X11090036.

[16]    

S. M. Afonin (2011) Electromechanical deformation and transformation of the energy of a nano-scale piezomotor. Russian engineering research. 31(7) 638-642, doi:10.3103/S1068798X11070033.

[17]    

S. M. Afonin (2011) Electroelasticity problems for multilayer nano- and micromotors. Russian engineering research. 31(9) 842-847, doi:10.3103/S1068798X11090036.

[18]    

B. Bhushan, editor (2004) Springer Handbook of Nanotechnology. New York: Springer, 1222 p.

[19]    

H. S. Nalwa, editor (2004) Encyclopedia of Nanoscience and Nanotechnology. Calif.: American Scientific Publishers.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership