ISSN: 2375-3803
AASCIT Communications  
Manuscript Information
 
 
A Holistic Approach to Quantum Physics
AASCIT Communications
Vol.4 , No. 4, Publication Date: Sep. 14, 2017, Page: 19-26
640 Views Since September 14, 2017, 526 Downloads Since Sep. 14, 2017
 
 
Authors
 
[1]    

Lucian Miti Ionescu, Mathematics Department, Illinois State University, Normal IL, USA.

 
Abstract
 

Quantum phenomena reflect resonance at the very fundamental level of a network processing Quantum Information. The term “particle” is a hindrance preventing the shift to a new paradigm. A top-level mental-visual model for “elementary particles” and some other quantum experiments is needed, and provided: a foamy Riemann Surface is interpreted as a Quantum Chip, having both fermionic parameters (sources as integrals), and bosonic character (propagating energy-momentum).


Keywords
 

Quantum Computing, Riemann Surfaces, Feynman Diagrams, Aharonov-Bohm


Reference
 
[01]    

Spinors and Spin Network, universe-review.ca

[02]    

Brian Hayes, g-ology, Computing Science: g-ology. American Scientist, Vol. 92, No. 3, May-June 2004, pages 212-216.

[03]    

L. M. Ionescu, The Feynman Legacy, Int. J. Pure and Appl. Math., Vol. 48, No. 3, 2008, pp. 333-355, https://arxiv.org/abs/math/0701069; “From operads and PROPs to Feynman processes”, JP Alg. Number Theory and Applications, Vol. 7, No. 2, pp. 261-283, 2007; arXiv:math/0701299

[04]    

I. V. Volovich, Number Theory as the Ultimate Physics Theory, P-Adic Numbers, Ultrametric Analysis, and Applications, January 2010, Volume 2, Issue 1, pp 77-87.

[05]    

L. M. Ionescu, Remarks on Physics as Number Theory, Proceedings of the NPA, Vol. 9, p. 232-244, 2012.

[06]    

P. A. M. Dirac, The relation between mathematics and physics, 1939, http://www.damtp.cam.ac.uk/events/strings02/dirac/speach.html

[07]    

Eugen Wigner, The unreasonable effectiveness of mathematics in the natural sciences, 1960.

[08]    

D. Gross, Physics and mathematics at the frontier, Proc. Nati. Acad. Sci. USA Vol. 85, pp. 8371-8375, November 1988 Symposium Paper, 1988; http://www.pnas.org/content/85/22/8371.full.pdf

[09]    

Pythagoras: “Number rules the Universe”, https://www.goodreads.com/quotes/597107-number-rules-the-universe

[10]    

F. Capra, The Tao of Physics, 1999.

[11]    

R. Healey, Holism and Nonseparability in Physics, Stanford Encyclopedia of Phylosophy, 2016, https://plato.stanford.edu/entries/physics-holism/

[12]    

M. P. Seevick, Holism, Physical Theories and Quantum Mechanics, 2005; https://arxiv.org/abs/quant-ph/0402047

[13]    

L. M. Ionescu, On the arrow of time, Theoretical Physics, Vol. 2, No. 3, September 2017, https://dx.doi.org/10.22606/tp.2017.23002

[14]    

L. M. Ionescu, The Digital World Theory: An Invitation”, Olimp Press, ISBN: 973-7744-39-x, Olimp Press, 2006; http://www.amazon.com/Digital-World-Theory-Lucian-Ionescu/dp/973774439X.

[15]    

L. M. Ionescu, Q++ and a Non-Standard Model (DWT v. 2), ISBN: 978-1-4251-3492-1; http://www.lulu.com/content/970826.

[16]    

David Bohm, Wholeness and the Implicate Order, Routledge, 1980.

[17]    

R. Feynman, The Feynman Lectures in Physics, Vol. 4, http://www.feynmanlectures.caltech.edu/

[18]    

P. G. Kwiat, B-G. Englert, “Quantum erasing the nature of reality or, perhaps, the reality of nature?”, Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Edited by John D. Barrow, Paul C. W. Davies and Charles L. Harper, Jr.., Ch. 15, pp. 306-328, Cambridge University Press, 2004; http://research.physics.uiuc.edu/QI/photonics/sciam-supplemental.html

[19]    

C. W. Misner, J. A. Wheeler, Classical Physics as Geometry, Annals of Physics, Volume 2, Issue 6, p. 525-603, 1957.

[20]    

Geometrodynamics, Wikipedia, https://en.wikipedia.org/wiki/Geometrodynamics

[21]    

V. Turaev, Quantum Invariants of knots and 3-Manifolds.

[22]    

L. H. Kauffman, S. L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, AM-134, Princeton University Press, 1994.

[23]    

L. Kauffman, S. J. Lomonaco Jr., Topological Quantum Information Theory.

[24]    

Z. Merali, “Entangled in the free will debate”, New Scientist, 4 August 2007, p. 10-11.

[25]    

R.~Britto, F.~Cachazo, B.~Feng and E.~Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., Vol. 94, 181602 (2005), hep-th/0501052, doi: 10.1103/PhysRevLett.94.181602.

[26]    

[QuantaMag] Natalie Wolchover, A jewel at the heart of Quantum Physics, Quanta Magazine, Sept. 2013, https://www.quantamagazine.org/physicists-discover-geometry-underlying-particle-physics-20130917/

[27]    

N.~Arkani-Hamed, F.~Cachazo and J.~Kaplan, What is the Simplest Quantum Field Theory?, JHEP Vol. 1009, 016 (2010), doi: 10.1007/JHEP09(2010)016, hep-th/0808.1446.

[28]    

N. Christenson, L. M. Ionescu, A Hopf algebra approach to BCFW recursion, work in progress, 2017.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership