






Vol.3 , No. 6, Publication Date: Feb. 12, 2018, Page: 52-59
[1] | Minzhi Wei, Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, P. R. China. |
[2] | Junning Cai, Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, P. R. China. |
The dynamical behavior of traveling wave solutions in the generalized Camassa-Holm equation is analyzed by using the bifurcation theory and the method of phase portraits analysis. The condition under which smooth solitary waves periodic waves appear are also given. What more interesting is it gives rise to M-shape and W-sharp type solutions.
Keywords
Bifurcation Theory, Smooth Solitary Wave Solutions, Periodic Wave Solutions, M/W-Shape Type Solutions, Generalized Camassa-Holm Equation
Reference
[01] | R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. |
[02] | R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. |
[03] | A. Constantin, J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 33 (2000), 75-91. |
[04] | E. Recio, S. C. Anco, A general family of multi-peakon equations, 2016, https://arxiv.org/pdf/1609.04354v1. pdf. |
[05] | S. N. Chow, J. K. Hale. Method of bifurcation theory. New York: Springer-Verlag, 1981. |
[06] | J. Guckenheimer, P. J. Holmes. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. New York: Springer-Verlag, 1983. |
[07] | J. B. Li, H. H. Dai, On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach, Science Press, Beijing, 2007. |
[08] | J. B. Li, G. R. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcat. and Chaos, 17 (2007), 4049-4065. |
[09] | J. B. Li, Zhao, X. G. R. Chen, On the breaking property for the second class of singular nonlinear traveling wave equations, Int. J. Bifurcat. and Chaos, 19, (2010), 1289-1306. |
[10] | J. B. Li, Z. J. Qiao, BIfurcatons and exact traveling wave solutipns for a genernalized Camassa-Holm equation, Int. Bifurcat. and Chaos., 3, (2013), 1350057. |
[11] | A. M. Wazwaz, The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions, Appl. Math. Comput., 170 (2005), 347-60. |
[12] | T. F. Qian, M. Y. Tang, Peakons and periodic cusp waves in a generalized Camassa-Holm equation, Chaos, Solitons & Fractals, 12, (2001), 1347-1360. |
[13] | A. Constantin, Soliton interactions for the Camassa-Holm equation, Exposition Math, 15, (1997), 251-64. |
[14] | J. P. Boyd, Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation, App. Math. Comput., 81, (1997), 173-187. |
[15] | Z. R. Liu, Q. X. Li, and Q. M. Lin, New bounded traveling waves of Camassa-Holm equation, Int. Bifurcat. and Chaos, 14, (2014), 3541-3556. |
[16] | Z. R. Liu, T. F., Qian, Peakons and their bifurcation in a generalized Camassa-Holm equation. Int. J. Bifurcat. and Chaos, 11, (2001), 781-792. |
[17] | A. S. Fokas, On a class of physically important integrable equations, Phys. D, 87, (1995), 145-150. |
[18] | P. J. Olver, P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev., 53, (1996), 1900-1906. |
[19] | B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D, 95 (1996), 229-243. |
[20] | Z. J. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys. 47 (2006) 112701-09. |