ISSN Print: 2381-1218  ISSN Online: 2381-1226
Computational and Applied Mathematics Journal  
Manuscript Information
 
 
Solving Initial and Boundary Value Problems Using Variation of Parameters Method
Computational and Applied Mathematics Journal
Vol.3 , No. 1, Publication Date: Jun. 13, 2017, Page: 1-5
713 Views Since June 13, 2017, 755 Downloads Since Jun. 13, 2017
 
 
Authors
 
[1]    

Aqsa Mumtaz, Department of Mathematics, University of Wah, Wah, Pakistan.

[2]    

Munaza Saeed, Department of Mathematics, University of Wah, Wah, Pakistan.

[3]    

Muhammad Touqeer Shahzad, Department of Mathematics, University of Wah, Wah, Pakistan.

[4]    

Qazi Mahmood Ul-Hassan, Department of Mathematics, University of Wah, Wah, Pakistan.

[5]    

Kamran Ayub, Department of Mathematics, Riphah International University Islamabad, Pakistan.

 
Abstract
 

The Variation of Parameters Method (VPM) use to solve initial and boundary value problems of vary objective nature. The logical results are calculated in terms of convergent series with easily computable components. The Variation of Parameters Method (VPM) is use without any, transformation or restrictive assumptions, perturbation and discretization is free from round off errors and calculation of the so called Adomian’s polynomials. The recommended algorithm is tested on higher dimensional initial and boundary value problems, Helmholtz equations and Boussinesq and nonlinear boundary value problems of various orders. The Numerical results tell the complete consistency of the proposed in ternVPM.


Keywords
 

Helmholtz Equations, Higher Dimensional Problems, Adomian’s Polynomials, Nonlinear Problems, Error Estimates, Partial Differential Equations, Boussinesq Equations, Variation of Parameters Method


Reference
 
[01]    

Abdou, M. A. and A. A. Soliman, Variational iteration method for solving Burger’s and coupled Burger’s equations. J. Comput. Appl. Math., 181: 245-251 ( 2005).

[02]    

Abdou, M. A. and A. A. Soliman, New applications of variational iteration method. Phys. D 211 (1-2): 1-8 (2005).

[03]    

Ghorbani, A. and J. S. Nadjfi, He’s homotopy perturbation method for calculating Adomian’s polynomials. Int. J. Nonlin. Sci. Num. Simul., 8 (2): 229-332. 4. He, J. H., 2007. Variational iteration method-some recent results and new interpretations. J. Comput. Appl. Math., 207: 3-17 (2007).

[04]    

He, J. H. and X. H. Wu, Variational iteration method: New development and applications. Comput. Math. Appl., 54: 881-894 (2007).

[05]    

He, J. H., The variational iteration method for eighth-order initial boundary value problems. Phys. Scr. 76 (6): 680-682 (2007).

[06]    

He, J. H., An elementary introduction of recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys., B 22 (21): 3487-4578(2008).

[07]    

He, J. H., Some asymptotic methods for strongly nonlinear equation. Int. J. Mod. Phys., 20 (20) 10: 1144-1199 (2006).

[08]    

He, J. H., Recent developments of the homotopy perturbation method. Top. Meth. Nonlin. Anal., 31: 205-209 (2008).

[09]    

Kaya, D., Explicit and numerical solutions of some fifth-order KdV equations by decomposition method. Appl. Math. Comput., 144: 353-363 (2003).

[10]    

Ma, W. X. and Y. You, Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Transactions of the American Mathematical Society, 357: 1753-1778 (2004).

[11]    

Ma, W. X. and Y. You, Rational solutions of the Toda lattice equation in Casoratian form. Chaos, Solitons and Fractals, 22: 395-406 (2004).

[12]    

Ma, W. X., H. Y. Wu and J. S. He, Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A, 364: 2932 (2007).

[13]    

Ma, W. X., Variational identities and applications to Hamiltonian structures of soliton equations. Nonlin. Anal., DOI:10.1016/j.na. 2009.02.045 (2009).

[14]    

Ma, W. X., J. S. He and Z. Y. Qin, A supertrace identity and its applications to super integrable systems. J. Math. Phys., 49: 033522, pp: 13 (2008).

[15]    

Ma, W. X. and L. Gao, Coupling integrable couplings. Mod. Phys. Lett. B (2008).

[16]    

Ma, W. X. and R. G. Zhou, Nonlinearization of spectral problems for the perturbation KdV systems. Phys. A, 296: 60-74 (2001).

[17]    

Ma, W. X. and M. Chen, Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A: Math. Gen. 39: 10787-10801World Appl. Sci. J., 11 (5): 622-639, 2010639 (2006).

[18]    

Ma, W. X., The algebraic structures of zero curvatures representation and applications to coupled KdV systems. J. Phys. A: Math. Gen., 26: 2573-2582 (1993).

[19]    

Ma, W. X., An approach for constructing nonisospectral hierarchies of evolution equations. J. Phys. A: Math. Gen., 25: L719-L726 (1992).

[20]    

Ma, W. X., Complexiton solutions to the Korteweg-de Vires equation. Phys. Lett., A 301: 35-44 (2002).

[21]    

Ma, W. X. and K. Maruno, Complexiton solutions of the Toda lattice equation. Phys. A 343: 219-237 (2004).

[22]    

Ma. W. X. and D. T. Zhou, Explicit exact solution of a generalized KdV equation. Acta Math. Scita. 17: 168-174 (1997).

[23]    

Ma, W. X. and B. Fuchssteiner, Explicit and exact solutions of Kolmogorov-PetrovskIIPiskunov equation. Int. J. Nonlin. Mech., 31 (3): 329-338 (1996).

[24]    

Ma, W. X., An application of the Casoratian technique to the 2D Toda lattices equation. Mod. Phys. Lett. B, 22: 1815-1825 (2008).

[25]    

Ma, W. X., C. X. Li and J. S. He, A second Wronskian formulation of the Boussinesq equation, Nonlin. Anl. Th. Meth. Appl., 70 (12): 4245-4258.

[26]    

Mohyud-Din, S. T., M. A. Noor and K. I. Noor, Some relatively new techniques for nonlinear problems. Math. Prob. Eng. 2009, Article ID 234849, 25 pages, doi:10.1155/2009/234849 (2009).

[27]    

Mohyud-Din, S. T. and M. A. Noor, Homotopy perturbation method for solving fourth-order boundary value problems. Math. Prob. Engg. (2007), 1-15, Article ID 98602, doi:10.1155/2007/98602 (2007).

[28]    

Mohyud-Din, S. T. and M. A. Noor, Travelling wave solutions of seventh-order generalized KdV equations using He’s polynomials. Int. J. Nonlin. Sci. Num. Sim., 10 (1): 223-229 (2009).

[29]    

Mohyud-Din, S. T. and M. A. Noor, Homotopy perturbation method for solving partial differential equations. Zeitschrift für Naturforschung A, 64a: 157-170 (2009).

[30]    

Mohyud-Din, S. T., M. A. Noor and K. I. Noor, On the coupling of polynomials with correction functional. Int. J. Mod. Phys. B (2009).

[31]    

Mohyud-Din, S. T., M. A. Noor, K. I. Noor and A. Waheed, Modified variation of parameters method for solving nonlinear boundary value problems. Int. J. Mod. Phys. B. 33. Noor, M. A. and S. T. Mohyud-Din, 2008. Variational iteration method for solving higherorder nonlinear boundary value problems using He’s polynomials. Int. J. Nonlin. Sci. Num. Simul., 9 (2): 141-157 (2009).

[32]    

Noor, M. A. and S. T. Mohyud-Din, 2008 Variational iteration method for solving fifth-order boundary value problems using He’s polynomials. Math. Prob. Engg. Article ID 954794, doi: 10:1155/2008/954794.

[33]    

Noor, M. A. and S. T. Mohyud-Din, Variational homotopy perturbation method for solving higher dimensional initial boundary value problems. Math. Prob. Engg. 2008, Article ID 696734, doi:10.1155/2008/696734 (2008).

[34]    

Noor, M. A., S. T. Mohyud-Din and A. Waheed, Variation of parameters method for solving fifth-order boundary value problems. Appl. Math. Inf. Sci., 2: 135-141 (2008).

[35]    

Ramos, J. I., On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl. Math. Comput., 199: 39-69 (2008).

[36]    

Soliman, A. A., 2006. A numerical simulation and explicit solutions of KdV-Burger and Lax’s seventh-order KdV equations, Chaos, Soliton and Fractals, 29 (2): 294-302. 39. Wazwaz, A. M., 1999. The decomposition method for solving higher dimensional initial boundary value problems of variable coefficients. Int. J. Comp. Math., 76: 159-172.

[37]    

Siddiqi, S. S. and E. H. Twizell, Spline solutions of linear sixth-order boundary value problems. Int. J. Comput. Math., 60: 295-304. (1996).

[38]    

Toomore, J., J. P. Zahn, J. Latour and E. A Spiegel, Stellar convection theory II: Single-mode study of the second convection zone in A-type stars. Astrophys. J., 207: 545-563 (1976).

[39]    

Twizell, E. H. and A. Boutayeb, q1990. Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Benard layer Eigen value problem. Proc. Roy. Soc. Lond. A 431: 433-450.

[40]    

Wazwaz, A. M., 2001. The numerical solution of sixth order boundary value problems by the modified decomposition method. Appl. Math. Comput., 118: 311-325. 44. Wazwaz, A. M., 2000. Approximate solutions to boundary value problems of higher-order by the modified decomposition method. Compute. Math. Appl., 40: 679-691.

[41]    

Wazwaz, A. M., 2000. The modified decomposition method for solving linear and nonlinear boundary value problems of tenth-order and twelfth-order. Int. J. Nonlin. Sci. Num. Simul., 1: 17-24.

[42]    

Wilcox, R., 1970. Closed form solution of the differential equation uxy+axux+byuy+cxyuz+ut = 0 by normal ordering exponential operators. J. Math. Phys., 11 (4): 1235-1237.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership