







Vol.4 , No. 6, Publication Date: Dec. 5, 2017, Page: 60-70
[1] | José del Carmen Jiménez Hernández, Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca, México. |
[2] | Humberto Vaquera Huerta, Departamento de Estadística, Colegio de Postgraduados, Texcoco, Edo. De, México. |
[3] | Paulino Pérez Rodríguez, Departamento de Estadística, Colegio de Postgraduados, Texcoco, Edo. De, México. |
Extreme value models has been applied in environmental studies for modeling air pollution data. Recently, the max-stable processes have become a useful tool for statistical modeling of spatial behavior of extremes. In this article, the max-stable processes models are applied to data of extreme concentration levels of carbon monoxide in order to investigate spatial trends of this air pollutant in one of the largest urban zone in the world (Mexico City). The proposed approach uses the Smith and Schlather dependence models which are fitted in each year and, based on the Takeuchi information criterion, the Schlather model was chosen as the best fitted for these data. Subsequently, we propose a trend surfaces parameter nested into the parameters of the extreme values distribution, that allows to obtain predictive maps for this pollutant. The results of the studied case indicate that Schlather dependence models shows the best fit, and predictive maps shows an increase in the levels of this pollutant in the south region of the urban studied area.
Keywords
Extreme Value Distribution, Stochastic Process, Likelihood Inference, Spatial Dependence
Reference
[01] | Akaike, H. A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19 (6), 1974, 716-723. |
[02] | Barrios, J. M. and Rodrigues, E. R. A queueing model to study the occurrence and duration of ozone exceedances in mexico city. Journal of Applied Statistics, 42 (1), 2015, 214-230. |
[03] | Coles, S., Bawa, J., Trenner, L., and Dorazio, P. An introduction to statistical modeling of extreme values, 2001, volume 208. Springer. |
[04] | Coles, S. G. and Tawn, J. A. Modelling extremes of the areal rainfall process. Journal of the Royal Statistical Society. Series B (Methodological), 1996, pages 329-347. |
[05] | Cox, D. R. and Reid, N. A note on pseudolikelihood constructed from marginal densities. Biometrika, 91 (3), 2004, 729-737. |
[06] | Davis, R. A., Kluppelberg, C., and Steinkohl, C. Max-stable processes for modeling extremes observed in space and time. Journal of the Korean Statistical Society, 42 (3), 2013, 399-414. |
[07] | Davison, A. C., Padoan, S. A., and Ribatet, M. Statistical modeling of spatial extremes. Statistical Science, 27 (2), 2012, 161-186. |
[08] | de Haan, L. A spectral representation for max-stable processes. The Annals of Probability, 12 (4), 1984, 1194-1204. |
[09] | de Haan, L. and Pickands, J. Stationary min-stable stochastic processes. Probability Theory and Related Fields, 72 (4), 1986, 477-492. |
[10] | Downs, J. Carbon monoxide exposure: Autopsy findings. In Payne-James, J. and Byard, R. W., editors, Encyclopedia of Forensic and Legal Medicine (Second Edition), 2016, pages 444-460. Elsevier, Oxford, second edition. |
[11] | Huser, R. and Davison, A. C. Composite likelihood estimation for the brown-resnick process. Biometrika, 100 (2), 2013, 511-518. |
[12] | Huser, R. and Davison, A. C. Space–time modelling of extreme events. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76 (2), 2014, 439-461. |
[13] | Menezes, R., Piairo, H., García-Soidán, P., and Sousa, I. Spatial–temporal modellization of the NO2 concentration data through geostatistical tools. Statistical Methods & Applications, 25 (1), 2015, 107-124. |
[14] | Padoan, S. A., Ribatet, M., and Sisson, S. A. Likelihood-based inference for max-stable processes. Journal of the American Statistical Association, 105 (489), 2010, 263-277. |
[15] | Pickands, J. Multivariate extreme value distributions. In Proceedings 43rd Session International Statistical Institute, volume 2, 1981, 859-878. |
[16] | R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2015. |
[17] | Ribatet, M. Spatial Extremes: Modelling Spatial Extremes. R package version 2.0-2, 2015. |
[18] | Schlather, M. Models for stationary max-stable random fields. Extremes, 5 (1), 2002, 33-44. |
[19] | Schlather, M. and Tawn, M. A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika, 90 (1), 2003, 139-156. |
[20] | Secretaria del Medio Ambiente, D. F. Calidad del aire en la Ciudad de México informe 2014. Dirección General de Gestión de la Calidad del Aire, Dirección de Monitoreo Atmosférico. México D. F. 2015. |
[21] | Semarnat. Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales. Indicadores Clave y de Desempeño Ambiental, 2012 edition. |
[22] | Sexto, M. B., Vaquera, H. H., and Arnold, B. Use of the dagum distribution for modeling tropospheric ozone levels. Journal of Environmentl Statistics, 5 (5), 2013, 1-11. |
[23] | Smith, R. L. Max-stable processes and spatial extremes. Unpublished manuscript, 1990. |
[24] | Smith, R. L., Tawn, J. A., and Yuen, H. K. Statistics of multivariate extremes. International Statistical Review / Revue Internationale de Statistique, 58 (1), 1990, 47-58. |
[25] | Takeuchi, K. Distribution of informational statistics and a criterion of model fitting. Suri-Kagaku (Mathematical Sciences), 153 (1), 1976, 12-18. |
[26] | Téllez, J., Rodríguez, A., and Fajardo, A. Contaminación por monóxido de carbono: un problema de salud ambiental. Revista de salud pública, 8 (1), 2006, 108-117. |
[27] | Varin, C. and Vidoni, P. A note on composite likelihood inference and model selection. Biometrika, 92 (3), 2005, 519-528. |