ISSN: 2375-3773
International Journal of Agricultural Sciences and Natural Resources  
Manuscript Information
 
 
Spatial and Temporal Distribution of Solar Irradiation in Río de la Plata Coast and Its Relationship with Climate Variables of Interest for Viticultural Production
International Journal of Agricultural Sciences and Natural Resources
Vol.3 , No. 4, Publication Date: Nov. 8, 2016, Page: 22-33
1770 Views Since November 8, 2016, 507 Downloads Since Nov. 8, 2016
 
 
Authors
 
[1]    

Gerardo Echeverría, Department of Plant Production, Faculty of Agronomy, UDELAR, Montevideo, Uruguay.

[2]    

Milka Ferrer, Department of Plant Production, Faculty of Agronomy, UDELAR, Montevideo, Uruguay.

[3]    

Rodrigo Alonso-Suárez, Solar Energy Laboratory, CENUR Litoral Norte, UDELAR, Salto, Uruguay.

[4]    

José M. Mirás-Avalos, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain.

 
Abstract
 

The current article investigates the relationships between solar irradiation and other climate variables of interest for viticulture; as well as with climate indexes used worldwide for viticultural zoning. Global solar irradiation was estimated through satellite imagery and, from this, photosynthetically active radiation (PAR) was calculated using a diffuse fraction model. Data were examined for six viticultural regions distributed along the Río de la Plata coastline, in South Uruguay for vintages 2011 to 2014. Results showed that available solar energy decreases from west to east in the coastline. Interannual variability is greater than spatial variability. Significant correlations were found between solar irradiation and reference evapotranspiration (R2=0.80), sunshine duration (R2=0.71), maximum (R2=0.48) and mean temperature (R2 =0.39). A negative relationship was found for relative humidity (R2= 0.40). Energy accumulation over the growing period showed a similar behaviour to the Adapted Heliothermal Index (R2=0.98), whereas mean daily irradiation for February was negatively correlated with the adapted Dryness Index (R2= 0.53). At the vineyard scale, a relationship between PAR and global solar irradiation of 48.3% was determined. Due to the limitation to the use of solar energy imposed by high temperatures, the amount of energy used by the vineyard represented a 34.3% of the global solar irradiation. Satellite images allowed for an accurate estimation of solar irradiation in locations where no ground observations are available. Moreover, this information can be used for viticultural zoning and for determining interannual variation of environmental conditions and for analyzing their influence on plant development and vintage quality.


Keywords
 

Solar Irradiation, Satellite Images, PAR Estimation, Multicriteria Climate Classification System, Río de la Plata, Viticulture


Reference
 
[01]    

Blouin, J., &Guimberteau, G. 2000. Maturation etmaturité des raisins. Editions Féret, Bordeaux. Francia.

[02]    

Fischer, U., Roth, D., Christmann, M. 1999. The impact of geographic origin, vintage and wine estate on sensory properties of Vitisvinifera cv. Riesling wines. Food Quality and Preference, 10 (4), 281-288.

[03]    

González-Neves, G., Ferrer, M., Gil, G. 2012. Differentiation of Tannat, Cabernet Sauvignon and Merlot grapes from Uruguay according to their general composition and polyphenolic potential. Comunicata Scientiae, 3 (1), 41-49.

[04]    

Fernández Gómez, O., Baeza Trujillo, P., Junquera González, P., Lissarrague Garcia-Gutierrez, J. R. 2013. Efectos de las diferentes estrategias de riego en la composicióndel vino y superfil sensorial (Vitisvinifera L., cv. Cabernet sauvignon). In: "Congreso de los Grupos de InvestigaciónEnológica", 18/06/2013 - 21/06/2013, EscuelaTécnica Superior de IngenierosAgrónomos de la Universidad Politécnica de Madrid. p. 1.

[05]    

Ferrer M., Echeverría G., Carbonneau A. 2014. Effect of berry weight and its components on the contents of sugars and anthocyanins of three varieties of Vitisvinifera L. under different water supply conditions. South African Journal of Enology and Viticulture, 35 (1), pp. 103-113.

[06]    

Van Leeuwen, C., Friant, P., Chone, X., Tregoat, O., Koundouras, S., Dubourdieu, D. 2004. Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55 (3), 207-217.

[07]    

INAVI. Instituto Nacional de Vitivinicultura, 2015. http://www.tannatalmundo.com.uy/articulos/681-38-estadisticas-de-viñedos-datos-departamentales-2015.html

[08]    

Li, Y., & Chao, J. 2016. An Analytical Solution for Three-Dimensional Sea–Land Breeze. Journal of the Atmospheric Sciences, 73 (1), 41-54.

[09]    

Tonietto J.; Carbonneau A. 2004. Multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology 124, 81-93.

[10]    

Ferrer, M., Pedocchi, R., Michelazzo, M., González Neves, G. Carbonneau, A. 2007. Delimitación y descripción de regiones vitícolas del Uruguay en base al método de clasificación climática multicriterio utilizando índices bioclimáticos adaptados a las condiciones del cultivo. Agrociencia, 11 (1), 47-56.

[11]    

Dedieu, G., Deschamps, P. Y., Kerr, Y. H. 1987. Satellite estimation of solar irradiance at the surface of the earth and of surface albedo using a physical model applied to Meteosat Data. Journal of Climate and Applied Meteorology, 26 (1), 79-87.

[12]    

Rabbinge, R. 1993. The ecological background of food production. In Ciba Foundation Symposium 177-Crop Protection and Sustainable Agriculture (pp. 2-29). John Wiley & Sons, Ltd..

[13]    

Smart R. E. 1989. Solar radiation interception as a guide to the design of horticultural plantings. II twenty years experience with grapevines. ISHS ActaHorticulturae 240: Australian Temperate Fruits Review Conference ISBN 978-90-66053-63-2, ISSN 0567-7572 Vol 1 Roseworthy, Australia.

[14]    

Ponzoni, F. J.; Shimabukuro, Y. E. 2009. Sensoriamento no estudo da vegetação.1ª Edição. São José dos Campos: Parênteses.

[15]    

Goudriaan J., Van Laar H. H. 1994. Modelling Potential Crop Growth Processes Textbook with Exercises. Kluwer Academic Publishers, Dordrecht, The Netherlands, Volume 2 1994. pp. 238.

[16]    

Li, L., Xin, X., Zhang, H., Yu, J., Liu, Q., Yu, S., Wen, J. 2015. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sensing of Environment, 165, 14-26.

[17]    

Jacovides C. P., Tymvios F. S., Asimakopoulos D. N, Theofilou K. M., Pashiardes S. 2003. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theoretical and Applied Climatology. 74,(3), 227-233.

[18]    

Yu X, Wu Z, Jiang W, Guo X. 2015. Predicting daily photosynthetically active radiation from global solar radiation in the Contiguous United States. Energy Convers Manag 89 (0): 71–82. doi: 10.1016/j. enconman.2014.09.038.

[19]    

Priestley C., Taylor R., 1972. On assessment of surface heat flux and evaporation using large-scale parameters, Monthly Weather Review, 100, 81-92.

[20]    

Buttrose, M. S. 1969. Vegetative growth of grapevine varieties under controlled temperature and light intensity. Vitis, 8: 280-285.

[21]    

Dokoozlian N, Kliewer W., 1996. Influence of light on grape berry growth and composition varies during fruit development. Journal of the American Society for Horticultural Science, 121, 869-874.

[22]    

Spayd S., Tarara J., Meed., Ferguson J., 2002. Separation of sunlight and temperature effects on the composition of Vitisvinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53, 171-182.

[23]    

Tarara, J. M., Lee, J., Spayd, S. E., Scagel, C. F. 2008. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. American Journal of Enology and Viticulture, 59 (3), 235-247.

[24]    

Chaves M. 1981. Photosynthetic characteristics and environmental control in some grapevine cultivars. In Margaris NS and HA Mooney (eds): Components of Productivity of Mediterranean•ClimateRegions Basic and Applied Aspects. 1981 Dr W. Junk Publishers, The Hague/ Boston/London.

[25]    

Bois, B., Wald, L., Pieri, P., Van Leeuwen, C., Commagnac, L., Chery, P., Christen, M., Gaudillère, J.-., Saur, É. 2008, Estimating spatial and temporal variations in solar radiation within Bordeaux winegrowing region using remotely sensed data, Journal International des Sciences de la Vigne et du Vin, 42 (1), 15-25.

[26]    

Failla O., Mariani Ll., Brancardo L., Minelli R., Scienza A., Murada G., Mancini S., 2004. Spatial distribution of solar radiation and its effects on vine phenology and grape ripeningin an Alpine environment. American Journal of Enology and Viticulture, 55, 128–138.

[27]    

Makra, L., Vitányi, B., Gál, A., Mika, J., Matyasovszky, I., Hirsch, T. 2009, Wine quantity and quality variations in relation to climatic factors in the Tokaj (Hungary) winegrowing region, American Journal of Enology and Viticulture, 60 (3), 312-321.

[28]    

Abal G., D’Angelo M., Cataldo J., Gutiérrez A. 2011 Mapa solar del Uruguay versión 1.0 MemoriaTécnica, Departamento de Publicaciones, Unidad de Comunicación de la Universidad de la República (UCUR), Montevideo, Uruguay ISBN: 978-9974-0-0847-2 53p.

[29]    

Alonso-Suárez R, G. Abal, R. Siri, P. Musé. 2012. Brightness-dependent Tarpley model for global solar radiation estimation using GOES satellite images: Application to Uruguay, Solar Energy, 86 (11), 3205-3215, http://dx.doi.org/10.1016/j.solener.2012.08.012

[30]    

Alonso-Suárez R, G. Abal, P. Musé, R. Siri, 2014. Satellite-derived Solar Irradiation Map for Uruguay, Energy Procedia, 57, 1237-1246, http://dx.doi.org/10.1016/j.egypro.2014.10.072.

[31]    

Alonso-Suárez R, Bidegain M, Abal G, Modernell P. 2016. Año Meteorológico Típico para Aplicaciones de Energía Solar (AMTUes): series horarias típicas para 5 sitios del Uruguay. Memoria Técnica del LES/UdelaR, pags 143, versión 2.4, junio de 2016 – http://les.edu.uy/productos/amtues-2/

[32]    

Echeverría G., Ferrer M., Abal G., Alonso-Suárez R. 2015. Solar Radiation in the Uruguayan Coast of the Río de la Plata and its Relation to Viticulture Climate. Anales del Actualités Vitivinicoles journal (PAV) of the GiESCO (http://www.giesco.org). 19 th International Meeting GIESCO, Pech Rouge, Montpellier, 2015.

[33]    

Justus, C., Paris, M., Tarpley, J., 1986. Satellite-measured insolation in the United States, México, and South America. Remote Sensing of Environment 20, 57–83.

[34]    

WMO. 2008. Guide to meteorological instruments and methods of observation. Technical Report 8, World Meteorological Organization, WMO. 7th Ed.

[35]    

Pérez R., Seals R., Zelenka, A. 1997. Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data. Solar Energy 60 (2), 89-96.

[36]    

Ruiz-Arias, J. A., Alsamamra, H., Tovar-Pescador, J., &Pozo-Vázquez, D. 2010. Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditions. Energy Conversion and Management, 51 (5), 881-893.

[37]    

Abal, G., Aicardi D., Alonso-Suárez R., Laguarda A. 2016. Estimation of ground-level diffuse irradiation in southern latitudes. Submitted in July 2016 to Solar Energy.

[38]    

Bonnardot, V. 2003. The sea breeze: a significant climatic factor for viticultural zoning in coastal wine growing areas. IV Symp. Intr. Zoning vit. 339-343.

[39]    

Myburgh, P. 2005. Effect of altitude and distance from the Atlantic Ocean on mean February temperatures in the Western Cape Coastal region. Wynboer Technical Yearbook, 2005, 49-52.

[40]    

Castaño, J. P; Giménez, A.; Ceroni, M.; Furest, J.; Aunchayna, R. 2009. Caracterización agroclimática del Uruguay 1980-2009. Instituto Nacional de Investigación Agropecuaria. Serie Técnica 193. Uruguay. 34p.

[41]    

Wang L, Gong W, Li C, Lin A, Hu B, Ma Y. 2013. Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China. Applied Energy 111 (0): 1010–1017. doi: 10.1016/j. apenergy.2013.07.001.

[42]    

Jones Hamlyn G. 2015. Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge university press, ISBN 978-0-521-27959-8.

[43]    

Escobedo J., Gomes E., Oliveira A., Soares J. 2011. Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil. Renew Energy; 36: 169–78.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership