ISSN: 2375-3927
International Journal of Mathematical Analysis and Applications  
Manuscript Information
 
 
A Statistical Study to Provide Estimators of Hurst Parameter for a Fractional Brownian Motion Through Unbalanced Sampling Time
International Journal of Mathematical Analysis and Applications
Vol.2 , No. 1, Publication Date: Feb. 9, 2015, Page: 1-8
2037 Views Since February 9, 2015, 847 Downloads Since Apr. 12, 2015
 
 
Authors
 
[1]    

Said Taan El Hajjar, Department of Mathematical Sciences, Ahlia University, Manama, Kingdom of Bahrain.

 
Abstract
 

This study aims to learn an estimation of the Hurst Parameter for unevenly sampled fractional Brownian motion. The motions are reproduced by means of Cholesky’s algorithm, and the parameter of Hurst is predicted by maximizing likelihoods. These methods are proven to be suitable for the use of quantitative data utilised in this paper during simulation. Several tables that contain the estimates of the self-similarity measure are presented in this study according to various sampling procedures with various sizes of motions. The initiations of these tables is stood on a sequence of statistical tests based on Student’s t-test and Fisher’s Test that make it possible to analyze and compare the distinctions between the considered sampling processes. This paper deals with the simulation of the fractional Brownian motions, with their identifications, and with the analysis of the experimental results. This study proves that unpredictable sampling gives more inconsistency between the outcomes and those expected values for a balance sampling. This inconsistency has a tendency to be decreased if there is increase in the size of the signals. Also, this study shows that when there is a uniformlyrandom sampling model, outputs from random samplings tend to be similar to those outputs that come from a balance deterministic sampling. It confirms that the best estimators of Hurst’s parameter are obtained by maximizing the chance.


Keywords
 

Fractional Brownian Motion, Estimation of Hurst Parameter, Unbalanced Sampling, Maximum Likelihood Estimator, Fisher Test, Student’s t- Test


Reference
 
[01]    

Beran J., (1994). Statistics for Long-Memory Processes. Chapman and Hall New York.

[02]    

Carbone A., Castelli G. & Stanley, H. (2004). Time-Dependent Hurst Exponent in Financial Time Series. Physica A 344. 267-271.

[03]    

Coeurjolly J. ( 2000). Simulation and Identification of the Brownian Motion: A Bibliographical and Comparative Study. Journal of Statistical Software, 5, 1-53.

[04]    

DAHLHAUS R. (1989). Efficient parameter estimation for self-similar processes. The Annals of Statistics, 17(4): 1749–1766.

[05]    

Herbin E., (2004). Processus multi-fractionnaires a paramétre multidimensionnels et régularité holdérienne. PhD thesis, Paris XI Orsay.

[06]    

Istas J. & Lang G., (1994). Variations Quadratiques et Estimation de Léxposant de Holder Local d’un processus Gaussien. C. R. Acad. Sci. Paris, 319, 201-206.

[07]    

Jennane R., Harba R. & Jacquet G. ( 1996). Estimation de la Qualite des Methods de Synthese du Movement Brownien Fractionnaire. Revue Traitement du Signal, 13 (4), 289-302.

[08]    

Jennane R., Harba R. & Jacquet G. ( 2001). Méthodes d’analysedu Movement Brownien Fractionnaire: Théorie at resultants comparatives. Revue Traitement du Signal, 18 (5-6), 419-436.

[09]    

LaiD., (2004).Estimating the Hurst effect and its application in monitoring clinical trials. Computational Statistics and Data Analysis, 45 : 549–562.

[10]    

Lehmann E. (1980). Efficient Likelihood Estimators. The American Statistician, 34, 233-235.

[11]    

Lundahl T., Ohley W., Kay S. & Siffert R. ( 1986). Fractional Brownian Motion: A Maximum Likelihood estimator and its application to image texture. IEEE Trans. On Medical Imaging, 5: 152-161.

[12]    

Mandelbrot B. and Van J. ( 1968). Fractional Brownian Motions, fractional noises and applications. SIAM Review, 10(4), 422-437.

[13]    

Mandelbrot B. (1983). The Fractal Geometry of Nature. Freeman, New York.

[14]    

Norrros I. (1994). A Storage model with Self-Similar Input. Queuing Systems, 16, 387-396.

[15]    

Peltier R., & Levy-Vehel J. (1994). A New Method for Estimating the Parameter of Fractional Brownian Motion. Research report 2396, INRIA Rocquencourt.

[16]    

PELTIER R. (1998). Processus stochastiques fractals avec applications en finance. PhD thesis, Univ. Paris VI.

[17]    

Potts D., Steidl G. & Tasche M. (2000). Fast Fourier Transforms for non-equispaced Data: A tutorial, chapter 12, 253-274. Brikhauser.

[18]    

Scafetta N., Griffin L., and West B. ( 2003). Holder Exponent Spectra for Human Gait. Physica A 328. 561-583.

[19]    

Vidacs A. & Virtamo J. (2000). Parameter estimation of geometrically sampled Fractional Brownian Traffic. INFOCOM, 3.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership