ISSN Print: 2472-9558  ISSN Online: 2472-9566
International Journal of Civil Engineering and Construction Science  
Manuscript Information
 
 
Passive Flow Control over the Roof of Buildings by Using Columnar Vortex Generator
International Journal of Civil Engineering and Construction Science
Vol.5 , No. 2, Publication Date: Feb. 12, 2018, Page: 32-42
1412 Views Since February 12, 2018, 966 Downloads Since Feb. 12, 2018
 
 
Authors
 
[1]    

Rafael Bardera, Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain.

[2]    

Miguel Angel Barcala-Montejano, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, Spain.

[3]    

Angel Rodriguez-Sevillano, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, Spain.

[4]    

Marina León-Calero, Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain.

[5]    

Juan Carlos Matías-García, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, Spain.

 
Abstract
 

Buildings are commonly characterized by bluff and sharp edges bodies which lead to a very complex flow structure. Wind engineering conducts studies related to wind loads and flow field near walls, roofs and surrounding buildings to predict building behaviour under different weather conditions, so experimental tests are usually performed. The aim of this study is to characterize the flow structure around a building and minimize the possibility to be hazard to roof-mounted equipment. Passive flow control devices (CVG – Columnar Vortex Generator) have been tested by modifying different geometrical parameters with the aim of reducing the adverse aerodynamic effects. Wind tunnel tests have been carried out to obtain experimental results. Particle image velocimetry technique has been used to provide quantitative information about the flow field. The best CVG configuration tested has presented encouraging results where the detachment angle has been reduced up to 71% with respect to the reference case. Furthermore, conical vortices mitigation at an incident yaw angle of 45° has been also investigated where a high reduction of the lateral vortices has been obtained.


Keywords
 

Columnar Vortex Generator, Flow Control, Civil Aerodynamic, Conical Vortices, Particle Image Velocimetry, Wind Tunnel


Reference
 
[01]    

Meseguer, J., Sanz, A., Perales, J. M., Pindado, S. (2002). Túneles Aerodinámicos para Aplicaciones de Ingeniería Civil. José Meseguer, Ángel Sanz, José M Perales; Santiago Pindado.

[02]    

Lawson, T. (2001). Building aerodynamics. World Scientific.

[03]    

Egorychev, O. O., Churin, P. S., & Poddaeva, O. I. (2015). Eхреrimental study of aerodynamic loads on high-rise buildings. In Advanced Materials Research (Vol. 1082, pp. 250-253). Trans Tech Publications.

[04]    

Kopp, G. A., Surry, D., & Mans, C. (2005). Wind effects of parapets on low buildings: Part 1. Basic aerodynamics and local loads. Journal of Wind Engineering and Industrial Aerodynamics, 93 (11), 817-841.

[05]    

Millward-Hopkins, J. T., Tomlin, A. S., Ma, L., Ingham, D., & Pourkashanian, M. (2011). Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-layer meteorology, 141 (3), 443-465.

[06]    

Stathopoulos, T., Wind pressures on low buildings with parapets, ASCE J. Struct. Div. 108 (1982) 2723-2736.

[07]    

Zaki, S. A., Hagishima, A., Tanimoto, J., & Ikegaya, N. (2011). Aerodynamic parameters of urban building arrays with random geometries. Boundary-layer meteorology, 138 (1), 99-120.

[08]    

2005 ASHRAE handbook - Fundamentals. (2005). 1st ed. Atlanta, GA.: ASHRAE, Chapter 16: Airflow Aroud Buildings.

[09]    

Meseguer Ruiz, J. (2013). Aerodinámica civil. 1st ed. Madrid: Ibergarceta.

[10]    

Jinsheng Cai, Her-Mann Tsai, Shijun Luo and Feng Liu. (2005) “Vortex Core and Its Effects on the Stability of Vortex Flow over Slender Conical Bodies”. Unevirsity of California, Irivine, CA.

[11]    

D. Banks and R. N. Meroney. (2001). “A model of roof-top surfaces pressures produced by conical vortices: Evaluation and implications”. Colorado State University, Fort Collins U.S.A.

[12]    

Franchini, S., Pindado, S., Meseguer, J. and Sanz-Andrés, A. (2005). “A parametric, experimental analysis of conical vortices on curved roofs of low-rise buildings”. Journal of Wind Engineering and Industrial Aerodynamics, 93 (8), pp. 639-650.

[13]    

Franchini, S., Pindado, S., Meseguer, J. (2003). “Cargas en cubiertas debidas a torbellinos cónicos”. E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, España.

[14]    

Franchini, S., Pindado, S., Meseguer, J. (2007). “Métodos para aliviar las cargas de succión debidas a torbellinos cónicos en cubiertas y tejados”. 8th Ibero-American Congress of Mechanical Engineering, October 2007.

[15]    

Baskaran, A., & Stathopoulos, T. (1988). Roof corner wind loads and parapet configurations. Journal of Wind Engineering and Industrial Aerodynamics, 29 (1-3), 79-88.

[16]    

Bitsuamlak, G. T., Warsido, W., Ledesma, E., & Chowdhury, A. G. (2012). Aerodynamic mitigation of roof and wall corner suctions using simple architectural elements. Journal of Engineering Mechanics, 139 (3), 396-408.

[17]    

Kopp, G. A., Mans, C., & Surry, D. (2005). Wind effects of parapets on low buildings: Part 4. Mitigation of corner loads with alternative geometries. Journal of Wind Engineering and Industrial Aerodynamics, 93 (11), 873-888.

[18]    

Suaris, W., & Irwin, P. (2010). Effect of roof-edge parapets on mitigating extreme roof suctions. Journal of Wind Engineering and Industrial Aerodynamics, 98 (10), 483-491.

[19]    

Surry, D., & Lin, J. X. (1995). The effect of surroundings and roof corner geometric modifications on roof pressures on low-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 58 (1-2), 113-138.

[20]    

Lin, J. X., & Surry, D. (1993, June). Suppressing extreme suction on low buildings by modifying the roof corner geometry. In Proc. 7th US National Conf. on Wind Eng.

[21]    

Blackmore, P. A. (1988). Load reduction on flat roofs-the effect of edge profile. Journal of Wind Engineering and Industrial Aerodynamics, 29 (1-3), 89-98.

[22]    

J. X. Lin, P. R. Montpellier, C. W. Tillmany W. I. Riker (2008). “Aerodynamic Devices for Mitigation of Wind Damage Risk”. The 4th International Conference on Advances in Wind and Structures (AWAS'08).

[23]    

Landman, D., Lamar, J. E., & Swift, R., 2005. Particle Image Velocimetry Measurements to Evaluate the Effectiveness of Deck-Edge Columnar Vortex Generators on Aircraft Carriers. RTO-MP-AVT-124.

[24]    

Nigro, N. Filippini, G. Franck, G. Storti, M. D’Elía, J. (2005) “Flow Around A Sharp-Edged Surface-Mounted Cube By Large Eddy Simulation”. Mecánica Computacional Vol. XXIV.

[25]    

Barlow, J., Pope, A. and Rae, W. (1999). Low-speed wind tunnel testing. 1st ed. New York: Wiley.

[26]    

Lugt, Hans J. (1983): Vortex Flow in Nature and Technology. John Wiley & Sons 1983, p. 143.

[27]    

Nangia, R. K., & Lumsden, R. B., 2004. Novel vortex flow devices-columnar vortex generators studies for airwakes. Thirty-fourth AIAA Fluid Dynamics, 1-18.

[28]    

Springer, A., (1998). Evaluating aerodynamic characteristics of wind-tunnel models produced by rapid prototyping methods. Journal of Spacecraft and rockets, 35 (6), 755-759.

[29]    

Tyler, C., Braisted, W., & Higgins, J., (2005). Evaluation of rapid prototyping technologiesfor use in wind tunnel model fabrication. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA (Vol. 1301, pp. 10-13).

[30]    

White, F. (2003). Fluid Mechanics. 1st ed. Dubuque, Iowa: McGraw-Hill.

[31]    

Prasad, A. K. (2000). Particle image velocimetry. CURRENT SCIENCE-BANGALORE, 79 (1), 51-60.

[32]    

Echols, W. H., Young, Y. A. (1963) Studies of portable air-operated aerosol generator. NRL Report 5929, Naval Research Laboratory, Washington, D. C.

[33]    

Kähler, C. J., Sammler, B., Kompenhans, J. (2002). Generation and control of tracer particles for optical flow investigation in air. Experiments in Fluids, 33, 736-742.

[34]    

Willert C., Raffel M. and Kompenhans J. (1997) Recent applications of particle image velocimetry in large-scale industrial wind tunnels. In: 17th International Congress on Instrumentation in Aerospace SimulationFacilities (ICIASF), 1 September-October 1997, pp. 258-266.

[35]    

Raffel, M., Willert, C. E., Wereley, S. T., Kompenhans, J. (2007) Particle Image Velocimetry: A Practical Guide. Springer.

[36]    

Adrian, R. J. (1991) Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23: 261-304.

[37]    

Adrian, R. J., Westerweel, J. (2011). Particle Image Velocimetry, Cambridge University Press.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership