






Vol.4 , No. 4, Publication Date: Aug. 25, 2017, Page: 35-43
[1] | Alloysius Chibuike Ogodo, Department of Microbiology, Faculty of Pure and Applied Sciences, Federal University Wukari, Wukari, Nigeria. |
[2] | Ositadinma Chinyere Ugbogu, Department of Microbiology, Faculty of Biological and Physical Sciences, Abia State University Uturu, Uturu, Nigeria. |
[3] | Reginald Azu Onyeagba, Department of Microbiology, Faculty of Biological and Physical Sciences, Abia State University Uturu, Uturu, Nigeria. |
[4] | Hope Chukwuemeka Okereke, Department of Microbiology, Faculty of Biological and Physical Sciences, Abia State University Uturu, Uturu, Nigeria. |
Maize provides carbohydrates, proteins, dietary fibers, vitamins and also serves as staple food crop in many parts of the world. Lactic acid bacteria (LAB) previously isolated from fermenting maize and sorghum were combined to obtain consortium from maize and consortium from sorghum respectively and used to ferment processed maize flour to determine the effect of fermentation on the proximate composition and in-vitro starch/protein digestibility using standard techniques at 12 h intervals. The result shows significant (p < 0.05) increase in the moisture content as the fermentation time increases from 9.66 ± 0.02% to 10.82 ± 0.03%. The ash content increased from 1.88±0.11% to 3.14±0.04%. The lipid content decreased significantly (p < 0.05) from 4.58 ± 0.05% to 4.08 ± 0.09%. Protein content increased significantly (p < 0.05) from 9.44 ± 0.87% to 12.97 ± 0.07% while the crude fibre and carbohydrate contents decreased significantly (p < 0.05) with the increasing fermentation time in all the samples from 3.62 ± 0.04% to 0.93 ± 0.09% and from 70.82 ± 1.11% to 68.01 ± 0.09% respectively. The result showed a significant (p < 0.05) increase in the in-vitro starch digestibility (IVSD) with increasing fermentation periods from initial value of 20.10 ± 1.28% to 49.45 ± 2.16%, 10.68 ± 0.92% to 49.32 ± 0.58%, and 10.68 ± 0.92% to 58.00 ± 0.97% for naturally fermented and LAB-consortium from maize and sorghum fermented samples respectively. The in-vitro protein digestibility (IVPD) increased significantly (p < 0.05) from 61.28 ± 0.96% to 82.06 ± 2.01%, 61.28 ± 0.96% to 84.62 ± 1.26% and 61.28 ± 0.96% to 88.70 ± 1.36% for naturally, LAB-consortium from maize and LAB-consortium from sorghum fermented samples respectively. This study has shown the effectiveness of LAB-consortium fermentation in improving the nutritional quality as well as increasing the IVSD and IVPD of flour from maize.
Keywords
LAB-Consortium, Proximate, Fermentation, In-Vitro Starch/Protein Digestibility
Reference
[01] | Nadeem, M., Anjum, F. M., Amir, R. M., Khan, M. R., Hussain, S. and Javed, M. S. (2010). Anoverview of anti-nutritional factors in cereal grains with special reference to wheat – A review. Pak. J. Food sci., 20: 1-4. |
[02] | Pereira, M. A., Jacobs, D. R., Pins, J. J., Raatz, S. K., Gross, M. D. Slavin, J. L. and Seaquist, E. R. (2012). Effect of whole grains on insulin sensitivity in overweight hyper insulinemic adults. American J. Clin. Nutr. 7: 848-855. |
[03] | Murtaugh, M. A., Jacobs, J. R., Steffen, D. R., Jacob, L. M. and Marquart, L. (2003). Epidemiological support for the protection of whole grains against diabetes. Pro. Nutr. Soc. 62: 143-149. |
[04] | Larsson, S. C., Giovannucci, E. Bergkvist, L. and Wolk, A. (2005). Whole grain consumption and risk of colorectal cancer: a population-based cohort of 60,000 women. Br. J. Cancer., 92: 1803-1807. |
[05] | Ranum, P., Pe˜na-Rosas, J. P. and Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Ann. New York Acad. Sci., 1312: 105-112. |
[06] | Ogodo, A. C., Ugbogu, O. C., Onyeagba, R. A., Okereke, H. C. and Agwaranze, D. I. (2016). Dynamics of functional properties of maize flours fermented with lactic acid bacteria (LAB)-consortium isolated from cereals. FUW Trends in Sci. Technol. J. 1 (1): 134-138. |
[07] | Gwirtz, J. A. and Garcia-Casal, M. N. (2014). Processing maize flour and corn meal food products. Ann. New York Acad. Sci., 1312: 66-75. |
[08] | Committee on World Food Security (CWFS) (2013). High Level Panel of Experts (HLPE). 2013. Biofuels and food security. A report by the High Level Panel of Experts on food security and nutrition of the Committee on World Food Security. Rome. http://www.fao.org/ Accessed December 10, 2015. |
[09] | Sanni, A. I. and Adesulu, A. T. (2013). Microbiological and physico-chemical changes during fermentation of maize for masa production. Afr. J. Microbiol. Res., 7 (34): 4355-4362. |
[10] | Onyango, C. A., Ochanda, S. O., Mwasaru, M. A.,Ochieng, J. K., Mathooko, F. M. and Kinyuru, J. N. (2013). Effects of Malting and Fermentation on Anti-Nutrient Reduction and Protein Digestibility of Red Sorghum, White Sorghum and Pearl Millet. J. Food Res., 2 (1): 41-49. |
[11] | Singh, A., Yadav, N. and Sharma, S. (2012). Effect of fermentation on physicochemical properties & in vitro starch and protein digestibility of selected cereals. Int. J. Agric. Food Sci., 2 (3): 66-70. |
[12] | Masood, M. I., Qadir, M. I., Shirazi, J. H. and Khan, I. U. (2011). Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol., 37 (1): 91–98. |
[13] | Huili, P., Guangyong, Q., Zhongfang, T., Zongwei, L., Yanping, W. and Yimin, C. (2011). Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis. System. Appl. Microbiol. 34 (3): 235-241. |
[14] | Chelule, P. K., Mbongwa, H. P. Carries, S. and Gqaleni, N. (2010). Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chem., 122: 656–661. |
[15] | Onweluzo, J. C. and Nwabugwu, C. C. (2009). Fermentation of millet (Pennisetum americanum) and Pigeon pea (Cajanus cajan) seeds for flour production: Effects on composition and selected functional properties. Pak. J. Nutr. 8: 737-744. |
[16] | AOAC (2005). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists; Gaithersburg, MD, USA, 1-34. |
[17] | Monjula, S. and John, E. (1991). Biochemical changes and in vitro protein digestibility of endosperm of germinating Dolichos lablab. J. Sci. Food Agric., 55: 429-438. |
[18] | Ogunsakin, O. A., Banwo, K., Ogunremi, O. R. and Sanni, A. I. (2015). Microbiological and physicochemical properties of sourdough bread from sorghum flour. Inter. Food Res. J., 22 (6): 2610-2618. |
[19] | Ojokoh, A. and Bello, B. (2014). Effect of Fermentation on Nutrient and Anti-nutrient Composition of Millet (Pennisetum glaucum) and Soyabean (Glycine max) Blend Flours. J. Life Sci., 8 (8): 668-675 |
[20] | Ojokoh, A. O., Fayemi, O. E., Ocloo, F. C. K. and Nwokolo, F. I. (2015). Effect of fermentation on proximate composition, physicochemical and microbial characteristics of pearl millet (Pennisetum glaucum (L.) R. Br.) and Acha (Digitaria exilis (Kippist) Stapf) flour blends. J. Agri. Biotechnol. Sust. Deve., 7 (1): 1-8. |
[21] | Batool, S. A., Rauf, N., Tahir, S. S. and Kalsoom, R. (2012). Microbial and Physico-chemical contamination in the weat flour of the twin cities of Pakistan. Int. J. Food Safety, 14: 75-82. |
[22] | World Food Program (WFP) (2012). Food quality control. http://www.wfp.org. Accessed 23/01/2016. |
[23] | Ntuli, V., Mekibib, S. B., Molebatsi, N., Makotoko, M., Chatanga, P. and Asita, O. A. (2013). Microbial and Physicochemical Characterization of maize and wheat flour from a milling company, Lesotho. Int. J. Food Safety, 15: 11-19. |
[24] | N’Guessan, K. F., Brou, K., Noémie, J., Casaregola, S. and Dje, K. M. (2012). Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer from Côte d’Ivoire. Antonie van Leeuwenhoek, 99 (4): 855-864. |
[25] | Akanbi, B. O., Agarry, O. O. and Garba, S. A. (2010): Quality assessment of selected cereal – soybean mixtures in “ogi” production. New York Sci. J. 3 (10): 17-26. |
[26] | Mbata, T. I., Ikenebomeh, M. J. and Alaneme, J. C. (2009). Studies on the microbiological, nutrient composition and antinutritional contents of fermented maize flour fortified with bambara groundnut (Vigna subterranean L). Afr. J. Food Sci., 3: 165-171. |
[27] | Adegbehingbe, K. T. (2014). Microbiological analyses and nutrient composition of sorghum co-fermented with Lima bean seeds. Curr. Res. Microbiol. Biotechnol., 2 (4): 431-437. |
[28] | Adegbehingbe, K. T. (2013). Fermented Sprouted and Unsprouted Maize for Ogi Production. Inter. J. Adv. Res., 1 (10): 428-434. |
[29] | Enyisi, I. S., Umoh, V. J., Whong, C. M. Z., Abdullahi, I. O. and Alabi, O. (2014). Chemical and nutritional value of maize and maize products obtained from selected markets in Kaduna State, Nigeria. Afr. J. Food Sci. Technol., 5 (4):100-104. |
[30] | Osman, M. A. (2010). Effect of traditional fermentation process on the nutrition and antinutrition content of pearl millet during preparation of Lohoh. J. Saudi Society Agri. Sci., 10: 1-6. |
[31] | Assohoun, M. C. N., N. Djeni, T. N., Koussémon-Camara 1, M. and Brou, K. (2013). Effect of Fermentation Process on Nutritional Composition and Aflatoxins Concentration of Doklu, a Fermented Maize Based Food. Food and Nutr. Sci., 4: 1120-1127. |
[32] | El-Beltagi, H. E. S. and Mohamed, A. A. (2010). Variation in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Fats oil, Grasas Aceites 61 (2):143-150. |
[33] | El-Beltagi, H. S., Mohamed, A. A. and Mekki, B. B. (2011). Differences in some constituents, enzymes activity and electrophoretic characterization of different rapeseed (Brassica napus L.) cultivars. Ann Univ Oradea -Fascicle Biol Tom 18 (1):39-46. |
[34] | Afify, A. M. R., Rashed, M. M., Ebtesam, A. M., El-Beltagi, H. S. (2011). Effect of gamma radiation on protein profile, protein fraction and solubility of three oil seeds. Not Bot Horti Agrobo 39 (2):90-98. |
[35] | Ojokoh, A. O., Daramola, M. K. and Oluoti, O. J. (2013). Effect of fermentation on nutrient and anti-nutrient composition of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) blend flours. Afr. J. Agri. Res., 8:3566-3570. |
[36] | Ojokoh, A. O., Fayemi, E. O., Ocloo, F. C. K. and Alakija, O. (2014). Proximate composition, antinutritional contents and physicochemical properties of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) flour blends fermented with Lactobacillus plantarum. Afr. J. Microbiol. Res., 8: 1352-1359. |
[37] | Amankwah, E., Barimah, J., Acheampong, R., Addai, L. and Nnaji, C. (2009). Effect of fermentation and malting on the viscosity of maize-soyabean weaning blends. Pak. J. Nutr., 8:1671-1675. |
[38] | Babalola, R. O. and Giwa, O. E. (2012). Effect of fermentation on nutritional and anti-nutritional properties of fermenting Soy beans and the antagonistic effect of the fermenting organism on selected pathogens. Inter. Res. J. Microbiol., 3 (10): 333-338. |
[39] | Roger, T., Léopold, T. N. and Funtong, M. M. (2015). Nutritional Properties and Antinutritional Factors of Corn Paste (Kutukutu) Fermented by Different Strains of Lactic Acid Bacteria. Inter. J. Food Sci., 2015: 1-14. |
[40] | Hassan, I. A. G. and El Tinay, A. H. (1995). Effects of fermentation on tannin content and in vitro protein and starch digestibility of two sorghum cultivars. Food Chem., 53: 149–151. |
[41] | Mohiedeen, I. E., Tinay, A. H. E., Elkhalya, A. E. O., Babiker E. E. and Mallasiy, L. O. (2010). Effect of fermentation on in vitro protein digestibility, protein fractions and amino acids composition of maize (Zea mays Linnaus) cultivars. Elec. J. Env. Agricult. Food Chem., 9: 838-847. |