






Vol.4 , No. 5, Publication Date: Aug. 30, 2017, Page: 53-60
[1] | Marisa Bernardo, Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emídio Navarro, Lisboa, Portugal; Centro de Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal. |
[2] | Telma Reis, Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emídio Navarro, Lisboa, Portugal; Centro de Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal. |
[3] | Miguel Minhalma, Centro de Física e Engenharia de Materiais Avançados, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. |
[4] | Amin Karmali, Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emídio Navarro, Lisboa, Portugal; Chemical Engineering and Biotechnology Research Center of ISEL and CITAB-UTAD, R. Conselheiro Emídio Navarro, Lisboa, Portugal. |
[5] | Maria Luísa Serralheiro, Centro de Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal. |
[6] | Rita Pacheco, Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emídio Navarro, Lisboa, Portugal; Centro de Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal. |
In this study were investigated, the synthesis, acetylcholinesterase inhibition and antioxidant activity of a series of hydroxamic acid derivatives (HAD), with different chemical group characteristics, such as aliphatic (acetohydroxamic acid and butyryl hydroxamic acid), aromatic (benzohydroxamic acid and phenylalanine hydroxamic acid) and amino acid (glycine hydroxamic acid and alanine hydroxamic acid). It was observed that these HAD compounds present very promising activity as acetylcholinesterase (AChE) inhibitors and as antioxidants. The aliphatic HAD demonstrated to have a higher inhibitory activity of AChE than amino acid or aromatic HAD. As for the antioxidant activity, a high antioxidant potential was found for all the compounds with EC50 values ranging from 0.19 µM to 1.65 µM. Aiming these applications, a biocatalysis approach was used to obtain these HADs with optimal reactional conditions. In this study, reverse micelles with immobilized Pseudomonas aeruginosa intact cells containing amidase were used as a biocatalyst to catalyze the acyltransferase reaction of the corresponding substrate amide and hydroxylamine to obtain various HAD and this was achieved for the first time with yields of approximately 100 %.
Keywords
Hydroxamic Acid Derivatives (HAD), Acetylcholinesterase Inhibitors, Antioxidant Potential, Pseudomonas aeruginosa, Biocatalysis
Reference
[01] | E. M. Muri, M. J. Nieto, R. D. Sindelar, J. S. Williamson (2002). Hydroxamic acids as pharmacological agents, Curr. Med Chem. 9: 1631-1653. |
[02] | K. Fazari (2001). The role of Hydroxamic acids in Biochemical Processes, Medical Journal of Islamic Academy of sciences 14: 109-116. |
[03] | D. Pal, S. J. Saha (2012). Hydroxamic acid – A novel molecule for anticancer therapy, Adv, Pharm. Technol. Res. 3: 92-99. |
[04] | F. Huguet, A. Melet (2012). Hydroxamic acids as potent inhibitors of Fe (II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-EcMetAP-Mn complexes, ChemMedChem. 7: 1020-1030. |
[05] | T. Karagiannis, K. Ververis (2012). Potential of chromatin modifying compounds for the treatment of Alzheimer's disease, Pathobiol. of Aging & Age-related Diseases 2: 14980-14988. |
[06] | N. Beliakova-Bethell, J. X. Zhang, A. Singhania, V. Lee, V. H. Terry, D. D. Richman, C. A. Spina, C. H. Woelk (2013). Suberoylanilide hydroxamic acid induces limited changes in the transcriptome of primary CD4 (+) T cells, AIDS 27: 29-37. |
[07] | C. Colussi, R. Berni, J. Rosati, S. Straino, S. Vitale, F. Spallotta, S. Baruffi, L. Bocchi, F. Delucchi, S. Rossi, M. Savi, D. Rotili, F. Quaini, E. Macchi, D. Stilli, E. Musso, A. Mai, C. Gaetano, M. C. Capogrossi (2010). The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice, Cardiovascular Research 87: 73-82. |
[08] | M. Z. Koncic, Z. Rajic, N. Petric, B. Zorc (2006). Antioxidant activity of NSAID hydroxamic acids, Acta Pharmaceutica 59: 235-242. |
[09] | M. Z. Končić, M. Barbarić, I. Perković, B. Zorc (2011). Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas, Molecules, 16: 6232-6242. |
[10] | D. Z. Liu, Y. S. Lin, W. C. Hou (2004). Monohydroxamates of aspartic acid and glutamic acid exhibit antioxidant and angiotensin converting enzyme inhibitory activities, Journal of Agricultural and Food Chemistry 52: 2386-2390. |
[11] | M. Lutfor, M. Y. Mashitah (2011). Synthesis of Poly(hydroxamic Acid)-Poly (amidoxime) Chelating Ligands for Removal of Metals from Industrial Wastewater, E-Journal of Chemistry 8: 1038-1043. |
[12] | S. S. Yang, K. T. Cheng, Y. S. Lin, Y. W. Liu, W. C. Hou (2004). Pectin Hydroxamic Acids Exhibit Antioxidant Activities in Vitro, J. Agric. Food Chem. 52: 4270–4273. |
[13] | A. Tripathi, U. C. Srivastava (2008). Acetylcholinesterase: A Versatile Enzyme of Nervous System, Annals of Neurosciences 15: 106-111. |
[14] | R. Gas'pers'ic', B. Koritnik, N. Crne-Finderle, J. Sketelj (1999). Acetylcholinesterase in the neuromuscular junction, Chemi- Biolog. Interact. 119-120: 301-308. |
[15] | V. P. Nair, J. M. Hunter (2004) Anticholinesterases and anticholinergic drugs, Contin. Educ. Anaesth. Crit. Care Pain 4: 164-168. |
[16] | P. K. Mukherjee, V. Kumar, M. Mal, P. J Houghton (2007). Acetylcholinesterase inhibitors from plants, Phytomedicine 14: 289-300. |
[17] | H. P. Lee, X. Zhu, G. Casadesus, R. J. Castellani, A. Nunomura, M. A. Smith, H. Lee, G. Perry (2010). Antioxidant approaches for the treatment of Alzheimer’s disease, Expert Rev. Neurother., 10: 1201–1208. |
[18] | B. Uttara, A. V. Singh, P. Zamboni, R. T. Mahajan (2009). Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options, Curr. Neuropharmacol. 7: 65-74. |
[19] | N. Guzior, A. Wickowska, D. Panek, D. Malawska (2015). Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer’s Disease, Curr. Med. Chem. 22: 373-404. |
[20] | C. Quintanova, R. S. Keri, S. M. Marques, M. G-Fernandes, S. M. Cardoso, M. L. Serralheiro, M. A. Santos (2015). Design, synthesis, and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs, Med. Chem. Commun. 6:1969-1977. |
[21] | M. Bernardo, R. Pacheco, M. L. M. Serralheiro, A. Karmali (2013). Production of Hydroxamic acids by immobilized Pseudomonas aeruginosa cells: Kinetic analysis in reverse micelles, J. Mol. Catal. B: Enzym. 93: 28-33. |
[22] | S. Agarwal, M. Gupta, B. Choudhury (2013). Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2, J Ind Microbiol Biotechnol. 40: 937-946. |
[23] | R. K. Bhatia, S. K. Bhatia, P. K. Mehta, T. C. Bhalla (2013). Production, and Characterization of Acyl Transfer Activity of Amidase from Alcaligenes sp. MTCC 10674 for Synthesis of Hydroxamic Acids, J Microb Biochem Technol. 5: 1- 5. |
[24] | Y. G. Maksimova, A. N. Gorbunova, A. S. Zorina, Y. A. Maksimov, G. V. Ovechkina, V. A. Demakov (2015). Transformation of amides by adherent Rhodococcus cells possessing amidase activity, Applied Biochemistry and Microbiology 51: 64-69. |
[25] | A. Fragoso, R. Pacheco, A. Karmali (2012). Investigation of structural and kinetics effects of Pseudomonas aeruginosa amidase encapsulation in reversed micelles, Process Biochem. 47: 264-272. |
[26] | K. M. Nampoothiri, K. Roopesh, S. Chacko, A. Pandey (2005). Comparative study of amidase production by free and immobilized Escherichia coli cells, Applied Biochemistry and Biotechnology 120: 97-108. |
[27] | K. Ingkaninan, P. Temkitthawon, K. Chuenchon, T. Yuyaem, W. Thongnoi (2003). Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies, Journal of Ethnopharmacol 89: 261–264. |
[28] | B. Tepe, D. Daferera, A. Sokmen, M. Sokmen, M. Polissiou (2005). Antimicrobial and antioxidant activities of essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae), Food Chemistry 90: 333–340. |
[29] | Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J Immunol Methods. 65: 55-63. |
[30] | A. Karmali, R. Pacheco, R. Tata, P. Brown (2001). Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability, Mol. Biotechnol. 17: 201–212. |
[31] | S. N. Denning, S. L. Morgan (1987) Approximating a region of a multifactor response surface. In: Experimental Design: A Chemometric Approach. Data handling in science and technology, vol. 3, Elsevier Science Publishers, Amsterdam. |
[32] | M. F. Hernandez, P. L. V. Falé, M. E. M. Araújo, M. L. M. Serralheiro (2010). Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food Chemistry, 120: 1076–1082 |
[33] | A. P. Murray, M. B. Faraoni, M. J. Castro, N. P. Alza, V. Cavallaro (2013). Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy, Curr Neuropharmacol. 11: 388–413. |
[34] | M. Mathew, S. Subramanian (2014). In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders, PLoS One 9: e86804. |
[35] | EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the re-evaluation of butylated hydroxyanisole-BHA (E 320) as a food additive, EFSA Journal 9 (2011) 2392. |
[36] | I. Baldeiras, I. Santana, M. T. Proenca, M. H. Garrucho, R. Pascoal, A. Rodrigues, D. Duro, C. R. Oliveira (2008). Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer's disease, J Alzheimers Dis. 15: 117–128. |
[37] | D. Kumar, S. I. Rizvi (2014). Markers of Oxidative Stress in Senescent Erythrocytes Obtained from Young and Old Age Rat, Rejuvenation Res. 17: 446–452. |
[38] | B. M. McGleenon, K. B. Dynan, A. P. Passmore (1999). Acetylcholinesterase inhibitors in Alzheimer’s disease, Br J Clin Pharmacol 48: 471–480. |
[39] | R. I. Geran, N. H. Greenberg, M. M. Macdonald, A. M. Schumacher, B. J. Abbott (1972). Protocols for screening chemical agents and natural products against animal tumors and other biological systems, Cancer Chemother Rep. 3: 1-102. |
[40] | S. K. Doke, S. C. Dhawale (2015). Alternatives to animal testing: A review, Saudi Pharm J. 23: 223–229. |
[41] | Y. Cetin, L. B. Bullerman (2005). Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay, Food Chem. Toxicol. 43: 755764. |
[42] | F. Wang, Q. Zhang (2016). Optimization of Medium Components for Improving the Antifungal Activity from Pseudomonas protegens XL03, American Journal of Microbiology and Biotechnology 3: 29–35. |
[43] | R. F. Li, B. Wang, S. Liu, S. H. Chen, G. H. Yu, S. Y. Yang, L. Huang, Y. L. Yin, Z. F. Lu (2016). Optimization of the Expression Conditions of CGA-N46 in Bacillus subtilis DB1342 (p-3N46) by Response Surface Methodology, Interdiscip Sci Comput Life Sci. 8: 277–283. |
[44] | X. Zhao, Y. Han, X. Tan, J. Wang, Z. Zhou (2014). Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology, J Microbiol. 52: 324–332. |
[45] | M. Senske, A. E. Smith, G. J. Pielak (2016). Protein Stability in Reverse Micelles, Angew. Chem. Int. Ed., 55: 3586 –3589. |
[46] | J. Michizoe, M. Goto, S. Furusaki (2001). Catalytic Activity of Lactase Hosted in Reversed Micelles J Biosci Bioeng. 92: 67-71. |
[47] | I. Mladenoska (2012). β-Galactosidase Micelles in Transglycosylation, Food Technol. Biotechnol. 50: 420–426. |
[48] | J. Michizoe, Y. Uchimura, T. Maruyama, N. Kamiya, M. Goto (2003). Control of water content by reverse micellar solutions for peroxidase catalysis in a water-immiscible organic solvent, J Biosci Bioeng. 95: 425-427. |
[49] | B. W. Weber, S. W. Kimani, A. Varsani, D. A. Cowan, R. Hunter, G. A. Venter, J. C. Gumbart, Sewell B. T. (2013). The Mechanism of the Amidases, J. of Biol. Chem., 288: 28514 –28523. |
[50] | D. Fournand, F. Bigey, A. Arnaud (1998). Acyl Transfer Activity of an Amidase from Rhodococcussp. Strain R312: Formation of a Wide Range of Hydroxamic Acids, Appl Environ Microbiol. 64: 2844-2852. |
[51] | R. Pacheco, A. Karmali, M. Matos-Lopes, M. L. Serralheiro (2005) Amidase encapsulated in TTAB reversed micelles for the study of transamidation reactions, Biocatalysis and Biotransformation 23: 407–414. |