ISSN: 2375-3005
American Journal of Microbiology and Biotechnology  
Manuscript Information
 
 
Phylogenetic Analysis of Trypanosoma evansi in Naturally Infected Camels from Sudan Based on Ribosomal DNA Sequences
American Journal of Microbiology and Biotechnology
Vol.4 , No. 6, Publication Date: Oct. 13, 2017, Page: 75-82
1070 Views Since October 13, 2017, 832 Downloads Since Oct. 13, 2017
 
 
Authors
 
[1]    

Hamid Ibrahim Mohamed Nour Croof, Ministry of Animals Resources, Gedaref, Sudan.

[2]    

Imna Malelle, Tanzania Veterinary Laboratory Agency, Vector Borne Disease Institute, Tanga, Tanzania.

[3]    

Hamis Said Nyingilili, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom.

[4]    

Sonia Sadeq, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom.

[5]    

Darren Brooks, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom.

[6]    

Nahla Osman Mohamed Ali, Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan.

 
Abstract
 

To a better understanding of the genetics of cameline Trypanosomosis “Surra”, the genetic diversity of Trypanosoma evansi in naturally infected Sudanese camel was assessed using internal transcribed spacer 1 and 2 (ITS-1 and ITS-2) and 18S rRNA sequences of the ribosomal DNA and compared these sequences to species from other countries. Eight T. evansi isolates were characterized genetically by PCR amplification of ITS-1 rDNA with the length of 290 – 900 bp, and sequencing of ITS-2 rDNA with the length of 164 – 167 bp, and 18S rRNA with the length of 741 –804 bp. Basic Local Alignment Search Tool data of the obtained ITS-2 sequences revealed that they corresponded to those of T. evansi, Iranian camel isolate (JN896755.1) with the homology of 97%. The nucleotide sequence variation of 18S rRNA region between Sudanese T. evani isolates was 1%. The mean GC content of 18S rRNA sequences was 10.77%, and that of ITS-2 rDNA sequences was 7.87%. In contrast to the ITS-2 region, multiple alignment of the nucleotide sequence of the 18S rRNA showed a high degree of sequence conservation in various T. evansi isolates. T. evansi separated in to two clades when subjected to phylogenetic analysis. Sudanese isolates of T. evansi 18S rRNA sequences clustered tightly within the T. evansi Kenyan isolate clade. Phylogenetic tree generated by 18S rRNA was unable to clearly show inter-and intraspecific genetic diversity of T. evansi isolates. The phylogenetic tree inferred from the ITS-2 nucleotide sequences clearly showed the genetic diversity of the Sudanese isolates. The data represented here could be applied to parasite dynamics and epidemiological studies as well as prevention and control of “Surra”. The sequences of T. evansi 18S rRNA have been deposited in the Gen Bank (Accession numbers: MF142282 – MF142289).


Keywords
 

Camel, Trypanosoma evansi, Phylogenetics, Ribosomal DNA Sequences, Sudan


Reference
 
[01]    

Agbo EE, Majiwa PA, Claassen HJ and tePas MF. (2002). Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting. Parasitology 124: 349-358.

[02]    

Amer S, Ryu O, Tada C, Fukuda Y, Inoue N, Nakai Y. (2011). Molecular identification and phylogenetic analysis of Trypanosoma evansi from dromedary camels (Camelus dromedarius) in Egypt, apilot study. Acta Trop. 2011 Jan; 117 (1): 39-46.

[03]    

Areekit S, Singhaphan P, Kanjanavas P, Khuchareontaworn S, Sriyapai T, Pakpitcharoen A, Chansiri K. (2008). Genetic diversity of Trypanosoma evansi in beef cattle based on internal transcribed spacer region. Infect. Genet. Evol. 2008 Jul; 8 (4): 484-8.

[04]    

Basagoudanavar SH, Rao JR, Singh RK, and Butchaiah G. (1999). Random amplification of polymorphic DNA fingerprinting of Trypanosoma evansi. Vet. Res. Commun. 23: 249–255.

[05]    

Beltrame-BotelhoI T, Gaspar-Silva D, Steindel M, Dávila AM, Grisard EC. (2005). Internal transcribed spacers (ITS) of Trypanosoma rangeli ribosomal DNA (rDNA): a useful marker for inter-specific differentiation. Infect. Genet. Evol. 2005 Jan; 5 (1): 17-28.

[06]    

Borst P, Fase-Fowler F, and Gibson WC. (1987). “Kinetoplast DNA of Trypanosoma evansi,” Molecular and Biochemical Parasitology, 23 (1): 31–38.

[07]    

Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, Cestari I, Desquesnes M, Gendrin C, Hertz-Fowler C, Imamura H, Ivens A, Kořený L, Lai DH, MacLeod A, McDermott SM, Merritt C, Monnerat S, Moon W, Myler P, Phan I, Ramasamy G, Sivam D, Lun ZR, Lukeš J, Stuart K, Schnaufer A. (2015). PLoS Negl Trop Dis. 2015 Jan 8; 9 (1): e3404.

[08]    

Claes F, Agbo EC, Radwanska M, TPas MF, Baltz T, DeWaal DT, Goddeeris BM, and Buscher P. (2003). How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by random amplified polymorphic DNA (RAPD) and the multiplex-endonuclease genotyping approach. Parasitology 126: 425–431.

[09]    

deOliveira Lima AN, daSilva Santos S, Herrera HM, Gama C, Cupolillo E, Jansen AM, Fernandes O. (2008). Trypanosoma evansi: molecular homogeneity as inferred by phenetical analysis of ribosomal internal transcribed spacers DNA of an eclectic parasite. Exp. Parasitol. 2008 Mar; 118 (3): 402-7.

[10]    

Gibson W and Stevens J. (1999). “Genetic exchange in the Trypanosomatidae,” Advances in Parasitology, 43: 1–46.

[11]    

Grisard EC, Campbell DA and Romanha AJ. (1999). Mini-exongene sequence polymorphism among Trypanosoma rangeli strains isolated from distinct geographical regions. Parasitology 118: 375-382.

[12]    

Hillis DM and Moritz C. (1990). An overview of applications of molecular systematic. pp. 502-515. In: Molecular Systematics (Hillis, D. M. and Moitz, C. E. eds), Sinauer Associates, Sunderland.

[13]    

Khuchareontaworn S, Singhaphan P, Viseshakul N, Chansiri K. (2007). Genetic diversity of Trypanosoma evansi in buffalo based on internal transcribed spacer (ITS) regions. J. Vet. Med. Sci. 2007 May; 69 (5): 487-93.

[14]    

Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukes J. (2008). Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi a repetite mutants of T. brucei. Proc. Natl. Acad. Sci. USA. 2008 Feb 12; 105 (6): 1999-2004.

[15]    

Luckins AG and Dwinger RH. (2004). Non-tsetse-transmitted animal Trypanosomiasis. In: Maudlin I., Holmes P. H., Miles M. A. The Trypanosomiases, Cabi Publishing, Trowbidge: 269–281.

[16]    

Lun ZR, Li AX, Chen XG, Lu LX, Zhu XQ. (2004). Molecular profiles of Trypanosoma brucei, T. evansi and T. equiperdum stocks revealed by the random amplified polymorphic DNA method. Parasitol. Res. 2004 Mar, 92 (4): 335–40.

[17]    

Omanwar S, Rao JR, Singh RK and Butchaiah G. (2001). DNA polymorphism in Trypanosoma evansi isolates defined by randomly amplified polymorphic DNA-PCR. Vet. Rec. 148: 244-246.

[18]    

Stevens JR, Noyes HA, Dover GA, Gibson WC. (1999). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology. 1999 Jan; 118 (Pt 1): 107-16.

[19]    

Takeet MI, Peters SO, Fagbemi BO, DeDonato M, Takeet VO, Wheto M, Imumorin IG. (2016). Phylogeny of Trypanosoma brucei and Trypanosoma evansi in naturally infected cattle in Nigeria by analysis of repetitive and ribosomal DNA sequences. Trop. Anim. Health Prod. 2016 Aug; 48 (6): 1235-40.

[20]    

Ventura RM, Takeda GF, Silva RAMS, Nunes VLB, Buck GA, Teixeira MMG. (2002). Genetic relatedness among Trypanosoma evansi stocks by random amplification of polymorphic DNA and evaluation of asynapomorphic DNA fragment for species-specific diagnosis. Int. J. Parasitol. 32: 53–s.

[21]    

Waitumbi JN, Murphy NB and Peregrine AS. (1994). Genotype and drug-resistance phenotype of Trypanosoma evansi isolated from camels in northern Kenya. Ann. Trop. Med. Parasitol. 88: 677-683.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership