






Vol.4 , No. 6, Publication Date: Oct. 13, 2017, Page: 67-74
[1] | Hamid Ibrahim Mohamed Nour Croof, Ministry of Animals Resources, Gedaref, Sudan. |
[2] | Imna Malelle, Tanzania Veterinary Laboratory Agency, Vector & Vector Borne Disease Institute, Tanga, Tanzania. |
[3] | Darren Brooks, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom. |
[4] | Hamid Suliman Abdella, Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan. |
[5] | Nahla Osman Mohamed Ali, Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan. |
Trypanosoma evansi is classified under the subgenus Trypanozoon along with the T. brucei spp. and T. equiperdumi, and they are main causative agents of Animal trypanosomoses throughout the world. T. evansi causes Surra via mechanical transmission in Camels. Whole blood samples were collected from 102 suspected camels from 18 different geographic regions in Sudan. T. evansi-affected camels were detected by Wet smear method, and the positive blood samples (10 out of 102) were subjected to DNA extraction and TBR-PCR examination and phylogenetic analysis. Basic Local Alignment Search Tool data of the obtained TBR sequences revealed that partial sequence of most of them corresponded to those of T. evansi (VSG), Malaysian isolate selanger 2 (AM497934.1) with the homology of 100%. The phylogenetic tree inferred from the TBR nucleotide sequences (137bp) clearly showed the genetic diversity of the parasites. Phylogenetic and molecular analyses of this region of variable surface glycoprotein (VSG) showed that three distinct genotypes of T. evansi in Sudanese dromedary camels are present. This study suggests that T. evansi could be a polyphyltic group with 4 clades or a monophlytic group and all isolates have a common ancestor. More informative genetic marker is required in order to have ultimate conclusion.
Keywords
Trypanosoma evansi, Molecular, Characterization, Camels, Phylogeny, Sudan
Reference
[01] | Ali NOM, Croof HI and Abdalla HS. (2011). Molecular Diagnosis of Trypanosoma evansi Infection in Dromedary Camels from Eastern and Western regions of the Sudan. Emirates Journal of Food and Agriculture 23 (4): 320-329. |
[02] | Artama WT, Agey MW, Donelson JE. (1992). DNA comparisons of Trypanosoma evansi (Indonesia) and Trypanosoma brucei spp. Parasitology. 1992 Feb; 104 Pt 1: 67-74. |
[03] | Bitew M, Amide Y, Zenebe T and Degefu H. (2011). Trypanosomes infection Rate in G. pallidipes and G. fuscies in Gojeb Valley, Southwest Ethiopia. Global Veterinaria, 6 (2): 131-135. |
[04] | Brun R, Hecker H, Lun ZR. (1998). Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship (a review). Vet. Parasitol. 1998 Oct; 79 (2): 95-107. |
[05] | Claes F, Agbo EC, Radwanska M, T Pas MF, BaltzT, De Waal DT, Goddeeris BM, and Buscher P. (2003). How does Trypanosoma equiperdum fit in to the Trypanozoon group? A cluster analysis by random amplified polymorphic DNA (RAPD) and the multiplex-endonuclease genotyping approach. Parasitology 126: 425–431. |
[06] | Claes F, Radwanska M, Urakawa T, Majiwa PA, Goddeeris B, Buscher P. (2004). Variable surface glycoprotein Ro Tat 1.2 PCR as a specific diagnostic tool for the detection of Trypanosoma evansi infections. Kinetoplastid Biol. Dis., 3, 3. |
[07] | Hoare CA. (1972). The Trypanosomes of Mammals. Blackwell Scientific Publications, Oxford. |
[08] | Jensen RE, Simpson L and Englund PT. (2008). What happens when Trypanosoma brucei leaves Africa. Trends Parasitol. 2008 Oct; 24 (10): 428-31. |
[09] | Karib AE. (1961). Animal trypanosomiasis in the Sudan. Sudan J. vet. Sci. anim. Husb. 2: 39-46. |
[10] | Kirchhoff LV and Donelson JE. (1993). PCR detection of Trypanosoma cruzi, African trypanosomes, and Leishmania species. In: Persing Dh, et al (eds) Diagnostic molecular microbiology. American Society for Microbiology, Washington, D. C., pp 443-455. |
[11] | Katakura K, Lubinga C, Chitambo H, Tada Y. (1997). Detection of Trypanosoma congolense and T. brucei subspecies in cattle in Zambia by polymerase chain reaction from blood collected on a filter paper. Parasitol. Res. 1997; 83 (3): 241-5. |
[12] | Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukes J. (2008). Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA. 2008 Feb 12; 105 (6): 1999-2004. |
[13] | Masiga DK, Smyth AJ, Hayes P, Bromidge TJ, Gibson WC. (1992). Sensitive detection of trypanosomes in tsetse flies by DN Aamplification, Int. J. Parasitol. 22 (7): 909-918. |
[14] | Morrison LJ and MacLeod A. (2011). "African trypanosomiasis." Parasite Immunol 33 (8): 421-422. |
[15] | Moser DR, Cook GA, Ocus DE, Bailey CP, Mckane MR, Donelson JE. (1989). Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction. Parasitology, 1989, 99: 57-66. |
[16] | Ngaira JM, Olembo NK, Njagi EN, Ngeranwa JJ. (2005). The detection of non-Ro Tat 1.2 Trypanosoma evansi. Exp. Parasitol., 110 (1): 30–38. |
[17] | Njiru ZK, Constantine CC, Masiga DK, Reid SA, Thompson RC, Gibson WC. (2006). Characterization of Trypanosoma evansi type B. Infect. Genet. Evol. 2006 Jul; 6 (4): 292-300. Epub 2005 Sep 12. |
[18] | Panyim S, Viseshakul N, Luxananil P, Wuyts N, Chokesajjawatee N. (1993). A PCR method for highly sensitive detection of Trypanosoma evansi in blood samples. Proceedings of EEC contractants workshops, Resistance or tolerance of animals to diseases and veterinary epidemiology and diagnostic methods, Rethymno, Greece, 2–6 November 1992. CIRAD-EMVT, Maisons Alfort, France (Monographie): 138–143. |
[19] | Sánchez E, Perrone T, Recchimuzzi G, Cardozo I, Biteau N, Aso PM, Mijares A, Baltz T, Berthier D, Balzano-Nogueira L, Gonzatti MI. (2015). Molecular characterization and classification of Trypanosoma spp. Venezuelan isolates based on microsatellite markers and kinetoplast maxicircle genes. Parasit. Vectors. 2015 Oct 15; 8: 536. |
[20] | Sloof P, Bos JL, Konings AF, Menke HH, Borst P, Gutteridge WE, Leon W. Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. J. Mol. Biol. 1983 Jun 15; 167 (1): 1-21. |
[21] | Sumba AL, Mihok S, Oyieke FA. (1998). Mechanical transmission of Trypanosoma evansi and T. congolense by Stomoxys niger and S. taeniatus in a laboratory mouse model. Med. Vet. Entomol. 1998 Oct; 12 (4): 417-22. |
[22] | Thekisoe OM, Inoue N, Kuboki N, Tuntasuvan D, Bunnoy W, Borisutsuwan S, Igarashi I, Sugimoto C. (2005). Evaluation of loop-mediated isothermal amplification (LAMP), PCR and parasitological tests for detection of Trypanosoma evansi in experimentally infected pigs. Vet. Parasitol. 2005 Jun 30; 130 (3-4): 327-30. |
[23] | Taylor TK, Boyle DB, Bingham J. (2008). Development of a TaqMan PCR assay for the detection of Trypanosoma evansi, the agent of surra. Vet. Parasitol. 2008 May 31; 153 (3-4): 255-64. |
[24] | Ventura RM, Takata CS, Silva RA, Nunes VL, Takeda GF, and Teixeira MM. (2002). Molecular and morphological studies of Brazilian Trypanosoma evansi stocks: the total absence of kDNA in trypanosomes from both laboratory stocks and naturally infected domestic and wild mammals. Parasitol. 86 (6): 1289-98. |
[25] | Verloo D, Magnus E, Büscher P. General expression of RoTat 1.2 variable antigen type in Trypanosoma evansi isolates from different origin. Vet. Parasitol. 2001 Jun 12; 97 (3): 183-9. |
[26] | Walsh PS, Metzger DA and Higuchi R. (1991). Chelex-100 as a medium for simple extraction of DNA for PCR–based typing from forensic material. Biotechniques 10: 506–513. |