ISSN: 2375-3005
American Journal of Microbiology and Biotechnology  
Manuscript Information
 
 
Occurrence of Phosphate Solubilizing Bacteria in the Rhizosphere of Triticum aestivum L. from Meknes, Morocco
American Journal of Microbiology and Biotechnology
Vol.4 , No. 1, Publication Date: Jun. 6, 2017, Page: 1-7
572 Views Since June 6, 2017, 598 Downloads Since Jun. 6, 2017
 
 
Authors
 
[1]    

Rfaki Abderrazak, Soil and Environment Microbiology Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.

[2]    

Nassiri Laila, Soil and Environment Microbiology Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.

[3]    

Ibijbijen Jamal, Soil and Environment Microbiology Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.

 
Abstract
 

The aim of present research is to study the relationship between density of rock phosphate-solubilizing bacteria population with physical, chemical and biological properties of the rhizosphere soil of wheat (Triticum aestivum L.). The native population of phosphate solubilizing bacteria (PSB) and total soil bacteria (TB) were enumerated in 132 samples of rhizosphere soil collected from fourteen agricultural areas at Meknes. The results revealed that the bacteria solubilizing rock phosphate are present in all soils analyzed in this study. The number of PSB and TB showed large variations and ranged from 12.5 – 0.002; 150 – 0.52 (x 105 CFU/ g soil), respectively within the place of sampling. The correlations between PSB counts and TB (r=0.82), total nitrogen (r=0.66) and organic matter (r=0.83) were positive and significant (p≤0.01). This research extends the knowledge on rock phosphate-solubilizing bacteria population in the rhizosphere of wheat cultivated in the different regions at Meknes.


Keywords
 

Rock Phosphate-Solubilizing Bacteria, Wheat, Rhizosphere Soil, Density


Reference
 
[01]    

Ndung’u-Magiroi KW, Herrmann L, Okalebo JR, Othieno CO, Pypers P, Lesueur D (2012). Occurrence and genetic diversity of phosphate-solubilizing bacteria in soils of differing chemical characteristics in Kenya. Ann. Microbiol. 62:897–904. doi:10.1007/s13213-011-0326-2.

[02]    

Jha DK, Sharma GD, Mishra RR (1992). Ecology of soil micro-flora and mycorrhizal symbionts. Biol. Fert. Soils. 12:272–278.

[03]    

Kim KY, Jordan D, McDonald GA (1998). Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fert. Soils. 26:79-87.

[04]    

Nahas E (2007). Phosphate solubilizing microorganisms: effects of carbon, nitrogen and phosphorus. In: Velazquez E, Rodriguez- Barrueco C (eds) First Int Meet microbial phosphate solubilization. Springer SBM, Dordrecht, pp 111–115.

[05]    

Saber K, Nahla L, Ahmed D, Chedly A (2005). Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25:389–393.

[06]    

Zaidi A, Khan MS, Ahemad M, Oves M (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta. Microbiol. Immunol. Hung. 56:263–284.

[07]    

Eftekhari G, Fallah AR, Akbari GA, Mohaddesi A, Allahdadi I (2010). Effect of phosphate solubilizing bacteria and phosphate fertilizer on rice growth parameters. Iranian J. Soil Res. (Soil Water Sci). 23:2.

[08]    

Elser JJ (2012). Phosphorus: a limiting nutrient for humanity. Curr. Opin. Biotechnol. 23:833–838.

[09]    

Liu Y, Chen J (2008). Phosphorus Cycle. In: S. E. Jørgensen and B. Fath (ed), Encyclopedia of ecology. Academic Press, Oxford, pp. 2715-2724.

[10]    

Yahya AI, Al-Azawi SK (1989). Occurrence of phosphate-solubilizing bacteria in some Iraqi soils. Plant Soil. 117:135–141.

[11]    

Katiyar V, Goel R (2003). Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res. 158:163–168.

[12]    

Montesinos E (2003). Plant-associated microorganisms: a view from the scope of microbiology. Int. Microbiol. 6:221–223.

[13]    

Fallah A, Kargar A (2006). Abundance and distribution of phosphate solubilizing bacteria and fungi in some soil samples from North of Iran. In: 18th Congress of Soil Science. Available at: http://www.ldd.go.th/18wcss/techprogram/P19283.HTM. Accessed 15 Aug 2013

[14]    

Walkley A, Black A (1934). An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci. 37: 29-37.

[15]    

Murphy J, Riley JP (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31–36.

[16]    

Olsen SR, Cole CV, Watanabe FS, Dean LA (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular 939:1-19. Gov. Printing Office, Washington.

[17]    

Trivedy RK, Goel PK, and Trisal CL (1998). Practical methods in Ecology and Environmental media, Series in methodology-2. Enviro Media publication. Postbox-60. Karad, 415110, India.

[18]    

Metson AJ (1956). Methods of chemical analysis for soil survey samples. NZ Soil Bur Bull n°12.

[19]    

Araújo WL, Lima AOS, Azevedo JL, Marcon J, Sobral JK, Lakava PL (2002). editors. Manual isolation of endophytic microorganisms. Department of Genetics - College of Agriculture "Luiz de Queiroz" - Piracicaba ESALQ – USP, Portuguese.

[20]    

Atlas RM (2004) Handbook of microbiological media. CRC Press, Boca Raton, Florida.

[21]    

Nautiyal CS (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 170:265–270.

[22]    

Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008). Rock phosphate solubilizing Actinomycetes: Screening for plant growth promoting activities. World J. Microbiol. Biotechnol. 24:2565-2575

[23]    

Mehlich A (1984). Mehlich-3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416.

[24]    

Tóth G, Jones A, Montanarella L (Eds.) (2013). LUCAS Topsoil Survey. Methodology, Data and Results. JRC Technical Reports. Publications Office of the European Union, EUR26102–Scientific and Technical Research Series, Luxembourg, p. 141. doi:10.2788/97922.

[25]    

Moat A G, Foster JW (1988). Microbial Physiology, 2nd edn. Wiley, New York, 597 pp.

[26]    

Tóth G, Guicharnaud RA, Tóth, B, Hermann T (2014). Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur. J. Agron. 55:42–52. doi:10.1016/j.eja.2013.12.008

[27]    

Giroux M, Cantin J, Rivest M, Tremblay G (2002). L'évolution des teneurs en phosphore dans les sols selon leur fertilité, leur richesse en phosphore et les types de sol. Colloque sur le phosphore: une gestion éclairée. Drummonville, 6 Novembre.

[28]    

Sharpley AN (1985). Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil. Sci. Soc. Am. J. 49, 905–911.

[29]    

Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011). Phosphorus dynamics: from soil to plant. Plant Physiol. 156:997–1005.

[30]    

Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Wackhamer D (2001). Forecasting agriculturally driven global environmental change. Science. 292:281–284.

[31]    

Richardson AE (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28:897-906.

[32]    

Zaidi A, Khan MS, and Ahmad E (2014). Microphos: Principles, Production and Application Strategies In Khan MS, Zaidi A, Musarrat J (ed.) Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology. Springer International Publishing Switzerland, pp 1-30.

[33]    

Kennedy AC (1999). Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74:65–76.

[34]    

Fernández LA, Agaras B, Wall LG, Valverde C (2015). Abundance and ribotypes of phosphate-solubilizing bacteria in Argentinean agricultural soils under no-till management. Ann. Microbiol. 65: 1667–1678. doi:10.1007/s13213-014-1006-9

[35]    

Azziz G, Bajsa N, Haghjou T, Taulé C, Valverde Á, Igual JM, Arias A (2012). Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl. Soil. Ecol. 61:320–6.

[36]    

Vikram A, Alagawadi AR, Hamzehzarghani H, Krishnaraj PU (2007). Factors related to the occurrence of phosphate solubilizing bacteria and their isolation in Vertisols. Int. J. Agric. Res. 2 (7):571–580.

[37]    

Hu J, Lin X, Wang J, Chu H, Yin R, Zhang J (2009). Population size and specific potential of P-mineralizing and -solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil. Pedobiologia. 53(1):49–58. doi:10.1016/j.pedobi.2009.02.002

[38]    

Ponmurugan P, Gopi C (2006). Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. J. Agron. 5:600–604.

[39]    

Reyes I, Valery A, Valduz Z (2006). Phosphate-solubilizing microorganisms isolated from rhizosphere and bulk soil of colonizer plants at an abandoned rock phosphate mine. Plant Soil. 287:69–75.

[40]    

Babana AH (2003). Mise au point d’un inoculant biologique pour le blé irrigué du Mali. Published PhD thesis. Faculté des sciences de l’agriculture et de l’alimentation de l’Université Laval Québec.

[41]    

Kundu B, Nehra K, Yadav R, Tomar M (2009). Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana, Indian. J. Microbiol. 49, 120–127.

[42]    

Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velazquez E (2001). Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33:103–110. doi:10.1016/S0038-0717(00)00120-6

[43]    

Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56:236–249. doi:10.1111/j.1574-6941.2005.00026.x

[44]    

Belimov AA, Puhalsky IV, Safronova VI, Shaposhnikov AI, Vishnyakova MA, Semenova EV, Nadezda YZ, Natalya MM, Walter W, Igor AT (2015). Role of plant genotype and soil conditions in symbiotic plant-microbe interactions for adaptation of plants to cadmium-polluted soils. Water Air Soil Pollut. 226:1–15. doi: 10.1007/s11270-015-2537-9

[45]    

Schreiter S, Sandmann M, Smalla K, and Grosch R (2014). Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS ONE 9:e103726. doi: 10.1371/journal.pone.0103726

[46]    

Chiarini L, Bevivino A, Dalmastri C, Nacamulli C and Tabacchioni S (1998). Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl. Soil Ecol. 8:11–18.

[47]    

Reyes I, Bernier L, Simard R R, Tanguay P and Antoun H (1999). Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28:291–295.

[48]    

Kucey RMN (1983). Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil Sci. 63:671–678.

[49]    

John L, Herms D, Stinner B, Hostink H (2001). Mulch effect on soil microbial activity, nutrient cycling, and plant growth in ornamental landscape. Ornamental Plant Annual Report and Research Reviews. The Ohio State University, Columbus

[50]    

Bashan Y, Puente ME, Rodriquea MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995). Survival of Azorhizobium brasilense in the bulk soil and rhizosphere of 23 soil types. Appl. Environ. Microbiol. 61:1938–1945.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership