ISSN: 2375-3005
American Journal of Microbiology and Biotechnology  
Manuscript Information
 
 
Study of Biofilm Production and Antimicrobial Resistance Pattern of Klebsiella Pneumoniae Isolated from Urinary Catheter at the University Hospital of Tlemcen
American Journal of Microbiology and Biotechnology
Vol.3 , No. 2, Publication Date: Mar. 28, 2016, Page: 13-17
2874 Views Since March 28, 2016, 1944 Downloads Since Mar. 28, 2016
 
 
Authors
 
[1]    

Samia Bellifa, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[2]    

Hafida Hassaine, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[3]    

Ibtissem Kara Terki, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[4]    

Wafae Didi, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[5]    

Imene M’hamedi, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[6]    

Meriem Lachachi, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[7]    

Ibrahim Benamar, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[8]    

Touhami Morghad, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

[9]    

Sarah Gaouar, Laboratory of Food, Biomedical and Environmental Microbiology (LAMAABE), University of Tlemcen, Tlemcen, Algeria.

 
Abstract
 

Klebsiella pneumoniae is an important gram-negative opportunistic pathogen causing primarily urinary tract infections, respiratory infections, and bacteraemia. The ability of bacteria to form biofilms on medical devices, e.g. catheters, has a major role in development of many nosocomial infections. There are various methods to detect biofilm production like Tissue Culture Plate (TCP), Tube method (TM), Congo Red Agar method (CRA), bioluminescent assay, piezoelectric sensors, and fluorescent microscopic examination. In the present study we screened 100 strains of K. pneumoniae isolated from urinary catheter at the university hospital of Tlemcen (Algeria) by three methods for the detection of biofilms (TCP, TM, CRA). Antibiotic susceptibility test of biofilm producing bacteria was performed by using the Kirby-Bauer disc diffusion technique according to CLSI guidelines. The TCP method was considered to be superior to TM and CRA. From the total of 100 clinical isolates, TCP method detected 69% as high, 21% moderate and 10% as weak or non-biofilm producers. We have observed higher antibiotic resistance in biofilm producing bacteria than non-biofilm producers. This study demonstrates a high propensity among the clinical isolates of K. pneumoniae to form biofilm and a significant association of biofilm with multiple drug resistance.


Keywords
 

Biofilm, Klebsiella pneumoniae, TCP, TM, RCA


Reference
 
[01]    

Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 2010; 59 (3): 227–238.

[02]    

Sousa C, Henriques M, Oliveira R. Mini-review: Antimicrobial central venous catheters recent advances and strategies. Biofouling 2011; 27 (6): 609–620.

[03]    

Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA, Knobloch JK-M. Biofilm formation in medical device-related infection. Int J Artif Organs 2006; 29: 343–359.

[04]    

Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 2015; 34 (5): 877-886.

[05]    

Cao X, Xu X, Zhang Z, Shen H, Chen J, Zhang K. Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates. Ann Clin Microbiol Antimicrob 2014; 13 (1): 1.

[06]    

Boddicker J. D, Anderson R. A, Jagnow J, Clegg S. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun 2006; 74 (8): 4590-4597.

[07]    

Murphy C. N, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 2012; 7 (8): 991-1002.

[08]    

Christensen GD, Simpson WA, Younger JA et al. Adherence of coagulase negative Staphylococci to plastic tissue cultures: a quantitative model for the adherence of Staphylococci to medical devices. J Clin Microbiol 1995; 22: 996-1006.

[09]    

Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37: 318-26.

[10]    

Freeman J, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42: 872-4.

[11]    

Donlan RM, Murga R, Bell M et al. Protocol for detection of biofilms on needleless connectors attached to central venous catheters. J Clin Microbiol 2001; 39: 750-3.

[12]    

Clinical Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; Twenty First informational supplement (M 100-S21). Wayne PA: Clinical and Laboratory Standards Institute; 2011.

[13]    

Kim J, Kim C, Hacker J, Ziebuhr W, Lee BK, Cho S. Molecular characterization of regulatory genes associated with biofilm variation in a Staphylococcus aureus strain. J Microbiol Biotechnol 2008; 18: 28–34.

[14]    

Fredheim EGA, Klingenberg C, Rodhe H, Frankenberger S, Gaustad P, Fllaegstad T, Sollid JE. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 2009; 47: 1172–1180.

[15]    

Stepanovic S, Vukovi D, Hola V et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMI 2007; 115: 891-9.

[16]    

Reid G. Biofilms in infectious disease and on medical devices. Int. J. Antimic Ag 1999; 11: 223-226.

[17]    

Henequen C, Forestier C. Influence of capsule and extended-spectrum beta-lactamases encoding plasmids upon Klebsiella pneumoniae adhesion. Res Microbiol 2007; 158: 339-347.

[18]    

Oliveira A, Cunha M. L. R. S. Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Res 2010; 10.1186/1756-0500-3-260.

[19]    

Melo P. D. C, Ferreira L. M, Nader Filho A, Zafalon L. F, Vicente H. I. G, Souza V. D. Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Microbiol 2013; 44 (1): 119-124.

[20]    

Baqai R, Aziz M, Rasool G. Urinary tract infection in diabetic patients and biofilm formation of uropathogens. Infect Dis J Pakistan 2008; 7 (1): 7-9.

[21]    

Mathur T, Singhal S, Khan S, Upadhyay D. J, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 2006; 24 (1), 25.

[22]    

Revdiwala S, Rajdev BM, Mulla S. Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup. Crit Care Res Pract 2012: 945805.

[23]    

Wojtyczka R. D, Orlewska K, Kępa M, Idzik D, Dziedzic A, Mularz T, Wąsik T. J. Biofilm formation and antimicrobial susceptibility of Staphylococcus epidermidis strains from a hospital environment. Int J Environ Res Public Health 2014; 11 (5): 4619-4633.

[24]    

Percival S. L, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 2015; 64 (4): 323-334.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership