ISSN: 2375-3919
American Journal of Materials Research  
Manuscript Information
 
 
Simulation of core@shell Type II Solar Cell by SILVACO ATLAS Software
American Journal of Materials Research
Vol.5 , No. 2, Publication Date: Feb. 27, 2018, Page: 30-34
875 Views Since February 27, 2018, 750 Downloads Since Feb. 27, 2018
 
 
Authors
 
[1]    

Masood Mehrabian, Department of Physics, Faculty of Basic Science, University of Maragheh, Maragheh, Iran.

[2]    

Elham Mirzapoor, Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran.

[3]    

Mohammadreza Akbarpour, Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran.

 
Abstract
 

A numerical simulation is performed to characterize the power conversion efficiency of a PbS Quantum Dot sensitized solar cell and a solar cell containing of type-II semiconductor core shell layer. Simulation results showed much higher efficiency for a core-shell solar cell as compared to PbS QD sensitized solar cells, reaching an overall efficiency of 3.5% under simulated solar illumination (AM1.5, 100 mW•cm-2). In addition, simulation results in this work demonstrated that the shell effectively could passivate the surface traps on PbS, resulting in highly improved in the short-circuit current density. Therefore, presented approach in present simulation provides a new method for simulation of high performance core-shell solar cells.


Keywords
 

PbS QD, Core Shell Type II, Photovoltaic, Simulation


Reference
 
[01]    

K. Szendrei, M. Speirs, W. Gomulya, D. Jarzab, M. Manca, O. V. Mikhnenko, M. Yarema, B. J. Kooi, W. Heiss, M. A. Loi, Adv. Funct. Mater. 22, 1598-1605, (2012).

[02]    

Bo Hou, Yuljae Cho, Byung Sung Kim, John Hong, Jong Bae Park, Se Jin Ahn, Jung Inn Sohn, SeungNam Cha, and Jong Min Kim, Highly Monodispersed PbS Quantum Dots for Outstanding Cascaded-Junction Solar Cells, ACS Energy Lett. 1, 834-839, (2016).

[03]    

Weizhe Xu, Furui Tan, et al. Efficient PbS QD solar cell with an inverted structure, Solar Energy Materials & Solar Cells 159, 503-509, (2017).

[04]    

M. Kamruzzaman and J A. Zapien, Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell, J Nanopart Res, 19: 125, (2017).

[05]    

A. J. Labelle, K. W. Chou, A. Amassian, E. H. Sargent, Nat. Nanotechnol. 7, 577-582, (2012).

[06]    

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, D. V. Talapin, J. Am. Chem. Soc. 134, 2457-2460, (2012).

[07]    

Darren C. J. Neo, Cheng Cheng, Samuel D. Stranks, Simon M. Fairclough, Judy S. Kim, Angus I. Kirkland, Jason M. Smith, Henry J. Snaith, Hazel E. Assender, and Andrew A. R. Watt, Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells, Chem. Mater. 26, 4004-4013, (2014).

[08]    

Andras G. Pattantyus-Abraham, Illan J. Kramer, Aaron R. Barkhouse, Xihua Wang, Gerasimos Konstantatos, Ratan Debnath, Larissa Levina, Ines Raabe, Mohammad K. Nazeeruddin, Michael Gratzel, and Edward H. Sargent, Depleted-Heterojunction Colloidal Quantum Dot Solar Cells, American Chemical Society, 4 (6), 3374-3380 (2010).

[09]    

Joseph M. Luther, Jianbo Gao, Matthew T. Lloyd, Octavi E. Semonin, Matthew C. Beard, and Arthur J. Nozik, Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell, Adv. Mater. 22, 3704-3707, (2010).

[10]    

Yoon, W.; Boercker, J. E.; Lumb, M. P.; Placencia, D.; Foos, E. E.; Tischler, J. G. Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells. Sci. Rep. 3, (2013).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership