ISSN: 2375-3919
American Journal of Materials Research  
Manuscript Information
 
 
Investigation of Optical and Electrical Properties of DAM-ADC Nuclear Track Detector Induced by Gamma Irradiation
American Journal of Materials Research
Vol.5 , No. 1, Publication Date: Feb. 27, 2018, Page: 5-13
193 Views Since February 27, 2018, 236 Downloads Since Feb. 27, 2018
 
 
Authors
 
[1]    

Yasser Saad Rammah, Department of Physics, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt.

[2]    

El Sayed Mahmoud Awad, Department of Physics, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt.

 
Abstract
 

Effect of gamma irradiation on the optical and electrical properties of Diallyl maleate- allyl diglycol carbonate (DAM-ADC) polymer was investigated. Samples of DAM-ADC were irradiated with gamma doses in the range of 100-500 kGy. The optical characterization of samples have been studied through the measurements of UV-visible absorption spectra. The refractive index and the absorption index were computed using the obtained data of transmittance and reflectance. The complex dielectric constant, dissipation factor, volume energy loss, surface energy loss functions, and optical conductivity were calculated and interpreted. The optical absorption data showed that dispersion energy, high frequency dielectric constant, and optical conductivity increase with increasing gamma while the optical energy band gap decreases. The results reflects that DAM-ADC polymer is a good candidate in optoelectronic devices based on its conductivity and dispersion parameters. In addition, it can be used as gamma radiation dosimetry in some specific range of doses.


Keywords
 

DAM-ADC, UV-Visible, Volume Energy Loss, Dissipation Factor, Optical Conductivity


Reference
 
[01]    

S. A. Durrani and R. K. Bull, Solid State Nuclear Track Detection, Pergamon Press, Oxford, 1987.

[02]    

R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids: Principles and Applications, University of California Press, California 1975.

[03]    

R. Pugliesi, M. A. Pereira, Nucl. Instrum. Methods Phys. Res., Sect. B 484 (2002) 613.

[04]    

F. H. Seguin et al., Rev. Sci. Instrum. 73 (2003) 975.

[05]    

R. Pugliesi, M. A. S. Pereira, M. A. Moraese, Appl. Radiat. Isot. 50 (2004) 375.

[06]    

M. El Ghazaly, Radiat. Eff. Defects Solids 167 (2011) 141.

[07]    

E. M. Awad, A. A. Soliman, H. M. El-Samman, W. M. Arafa, Y. S. Rammah, Phys. Lett. A 372 (2008) 2959-2966.

[08]    

E. M. Awad, A. A. Soliman, Y. S. Rammah, Phys. Lett. A 369 (2007) 359-366.

[09]    

U. Zhokhavets, R. Goldhahn, G. Gobsch, W. Schliefke, Synth. Met. 138 (2003) 491.

[10]    

T. Tsuruta, Y. Nakanishi, H. Shimba, Radiat. Meas. 46 (2011) 59-63.

[11]    

A. H. Ashry, H. El-Samman, M. Abou-leila, W. Arafa, A. Umar, A. M. Abdalla, T. Tsuruta, Nucl. Instr. Meth. Phys. Res. B290 (2012) 39-42.

[12]    

H. El-Samman, A. H. Ashry, W. Arafa, M. Abou-leila, A. M. Abdalla, T. Tsuruta, Radiat. Phys. Chem. 102 (2014) 79-83.

[13]    

Y. S. Rammah, O. Ashraf, A. M. Abdalla, M. Eisa, A. H. Ashry, T. Tsuruta, Radiat. Phys. Chem. 107 (2015) 183-188.

[14]    

E. Colby, G. Lum, T. Plettner, J. Spencer, IEEE Trans. Nucl. Sci., NS-49 (2002) 2857.

[15]    

K. Arshak, A. Arshak, S. Zleetni, O. Korostynska, IEEE Trans. Nucl. Sci., NS-51 (2004) 2250.

[16]    

A. Charlesby, Atomic Radiation and Polymers, Oxford Pergamon, 1960.

[17]    

A. Chapiro, Radiation Chemistry of Polymeric Systems Interscience, New York (1962) 386.

[18]    

L. Calcagno, G. Compagnini, G. Foti, Nucl. Instrum. Methods B 65 (1992) 413.

[19]    

J. C. Pivin, Nucl. Instrum. Methods B 84 (1994) 484.

[20]    

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, L. Wang, F. Hosoi, H. Omichi, and P. Goppelt-Langer, Radiat. Eff. Defects Solids 133 (1995) 193.

[21]    

A. Tidjani and Y. Watanabe, J. Polym. Sci. Part A: Polym. Chem. 33 (1995) 1455.

[22]    

D. Sinha, G. K. Sarker, S. Ghosh, A. Kulshreshthta, K. K. Dwivedi, D. Fink, Radiat. Meas. 29 (1997) 599.

[23]    

S. Singh, S. Prasher, Nucl. Instr. and Meth. B 222 (2004) 518.

[24]    

S. Singh, S. Prasher, Radiat. Meas. 40 (2005) 50-54.

[25]    

M. F. Zaki, J Phys D Appl Phys. 41 (2008) 175404.

[26]    

A. A. Abdelfattah, H. Abdelhmid, R. M. Radwan, Nucl. Inst. Meth. B 196 (2002) 279.

[27]    

M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255 (2009) 4491.

[28]    

F. Yakuphanoglu, G. Barım, I. Erol, Physica B 391 (2007) 136.

[29]    

R. Swaepoel, J. Phys. E: Sci. Instrum. 16 (1983) 1214.

[30]    

M. Fadel, S. A. Fayek, M. O. Abou-Helal, M. M. Ibrahim, A. M. Shakra, J. alloys Compd. 485 (2009) 604-609.

[31]    

M. M. Abdel-Aziz, I. S. Yahia, L. A. Wahab, M. Fadel, M. A. Afifi, Appl. Surf. Sci. 252 (2006) 8163-8170.

[32]    

M. M. El-Nahass, K. F. Abd-El-Rahman, A. A. M. Farag, A. A. A. Darwish, Int. J. Mod. Phys. B 18 (2004) 421.

[33]    

F. Yakuphanoglu, M. Sekerci, O. F. Ozturk, Opt. Commun. 239 (2004) 275-280.

[34]    

M. M. El-Nahass, Z. El-Gohary, H. S. Soliman, Opt. Laser & Technol. 35 (2003) 523.

[35]    

A. A. M. Farag, I. S. Yahia, Opt. Communications. 283 (2010) 4310.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership