






Vol.4 , No. 3, Publication Date: Aug. 29, 2017, Page: 15-22
[1] | Konstantin Zheleznikov, Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia. |
[2] | Elizaveta Shalaeva, Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia. |
[3] | Dina Kellerman, Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia. |
LiFe5O8 has been synthesized by the self-propagating glycine-nitrate method. To clarify the stages of lithium ferrite phase formation, the structural, magnetic, and thermogravimetric studies have been carried out. The evolution of the magnetic properties indicated a transition from homogeneous distribution of iron ions in the carbon matrix to their clustering and subsequent crystallization of the magnetic lithium ferrite phase. The coexistence of α- and β- LiFe5O8 was found. The electrochemical tests showed a reduction of Fe3+ ions to metallic state during the lithiation process.
Keywords
LiFe5O8, Spinel, Glycine-Nitrate Method, Superparamagnetism, Microstructure, Anode
Reference
[01] | P. B. Braun, A Superstructure in Spinels, Nature 170 (1952) 1123. |
[02] | W. Cook, M. Manley, Raman characterization of α- and β-LiFe5O8 prepared through a solid-state reaction pathway, J. of Solid State Chemistry 183 (2010) 322-326. |
[03] | P. D. Baba and G. M. Argentina, “Microwave lithium ferrites: An overview,” IEEE Transactions Microwave Theory and Techniques, Vol. 22, pp. 652–658, June 1974. |
[04] | F. O. Ernst, H. K. Kammler, A. Roessler, S. E. Pratsinishttp://www.sciencedirect.com/science/article/pii/S0254058406002136 - cor1 mailto:pratsinis@ptl.mavt.ethz.ch, W. J. Stark, J. Ufheil, P. Novák, Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8, Materials Chemistry and Physics 101 (2007) 372–378. |
[05] | P. Prosini, M. Carewska, S. Loreti, C. Minarini, S. Passerini, Lithium iron oxide as alternative anode for Li-ion batteries, Int. J. of Inorganic Materials 2 (2000) 365–370. |
[06] | W. Zhou, Y. Wang, L. Zhang, G. Song and S. Cheng, Capacitive nanosized spinel α-LiFe5O8 as high performance cathodes for lithium-ion batteries, Int. J. Electrochem. Sci., 10 (2015) 5061-5068. |
[07] | M. Catti, M. Montero-Campillo, First-principles modelling of lithium iron oxides as battery cathode materials, J. Power Sources 196 (2011) 3955-3961. |
[08] | M. Vucinic-Vasic, B. Antic, J. Blanusa, S. Rakic, A Kremenovic, A. S. Nikolic, A. Kapor, Formation of nanosize Li-ferrites from acetylacetonato complexes and their crystal structure, microstructure and order–disorder phase transition, Appl. Phys. A 82 (2006) 49–54. |
[09] | B. Li, Y. Xieb, et al., Synthesis of the nanocrystalline a-LiFe5O8 in a solvothermal process, Solid State Ionics 120 (1999) 251–254. |
[10] | M. Tabuchi, A. Nakashima, et al. Fine Li (4 − x)/3 Ti (2 − 2x)/3FexO2 (0.18 ≤ x ≤ 0.67) powder with cubic rock-salt structure as a positive electrode material for rechargeable lithium batteries, J. Mater. Chem, 13 (2003) 1747-1757. |
[11] | S. Verma, P. Joy, Low temperature synthesis of nanocrystalline lithium ferrite by a modified citrate gel precursor method, Mater. Res. Bull., 43 (2008) 3447-3456. |
[12] | K. Ding, J. Zhao, M. Zhao, Y. Chen, Y. Zhao, J. Zhou, The Effect of Ti Doping on the Electrochemical Performance of Lithium Ferrite, Int. J. Electrochem. Sci., 11 (2016) 2513-2524. |
[13] | W. Zhou, Y. Wang, L. Zhang, G. Song and S. Cheng Capacitive Nanosized Spinel α-LiFe5O8 as High Performance Cathodes for Lithium-ion Batteries, Int. J. Electrochem. Sci., 10 (2015) 5061-5068. |
[14] | R. Singhal, A. Kumar, R. S. Katiyar, Nanomaterials for Li Ion Rechargeable Batteries: Synthesis and Characterizations, Journal of Nano Energy and Power Research, 2 (2013). 25-40. |
[15] | A. Mukasyan, P. Epstein, P. Dinka, Solution combustion synthesis of nanomaterials, Proceedings of the Combustion Institute 31 (2007) 1789–1795. |
[16] | H. Yang, Z, Wang, L. Song, M. Zhao, J. Wang, H, Luo, A study on the coercivity and the magnetic anisotropy of the lithium ferrite nanocrystallite, Phys. D: Appl. Phys. 29, (1996) 2574-2578. |
[17] | M. Pernet, P. Strobel, Lithium insertion into iron spinel, Defect and Diffusion Forum Vols 127-128 (1995) 73-92. |
[18] | C. Chen, M. Geenblattj, J. V. Waszczak, Lithium Insertion Compounds of LiFe5O8, Li2FeMn3O8, and Li2ZnMn3O8, J. of Solid State Chemistry 64 (1986) 240-248. |
[19] | Y. Lee, C. Yoon, Y. S. Lee, Y.-K. Sun, Synthesis and structural changes of LixFeyOz material prepared by a solid-state method, J. of Power Sources 134 (2004) 88–94. |
[20] | I. Uzunov S. Uzunova, D. Kovacheva, S. Vasilev, B. Puresheva, Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries, J. Mater. Sci. 42 (2007) 3353–3357. |
[21] | M. Obrovac, R. Dunlap, R. J. Sanderson, and J. R. Dahn, The electrochemical displacement reaction of lithium with metal oxides, J. of The Electrochemical Society, 148 (2001) A576-A588. |
[22] | M. Thackeray, M. Chan, L. Trahey, S. Kirklin, and C. Wolverton., Vision for designing high-energy, hybrid Li ion/Li−O2 cells, J. Phys. Chem. Lett. 4 (2013) 3607−3611. |
[23] | L. Trahey, C. Johnson, et al., Activated lithium-metal-oxides as catalytic electrodes for Li–O2 Cells, Electrochemical and Solid-State Letters, 14 (5) (2011) A64-A66. |
[24] | M. Rahman,, J. Wang, M. F. Hassan, Z. Chen, H.-K. Liu, Synthesis of carbon coated nanocrystalline porous α-LiFeO2 composite and its application as anode for the lithium ion battery, J. of Alloys and Compounds 509 (2011) 5408–5413. |
[25] | A. Ponroucha, P.-L. Taberna, P. Simon, M. R. Palacin. On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction, Electrochimica Acta 61 (2012) 13–18. |
[26] | J. Jamnik, J. Maier, Nanocrystallinity effects in lithium battery materials. Aspects of nanoionics. Part IV, Phys. Chem. Chem. Phys. 5 (2003) 5215–5220. |