






Vol.3 , No. 3, Publication Date: Sep. 21, 2016, Page: 15-20
[1] | A. Diama, Physics Department, Condensed Matter and Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan, Côte d’Ivoire; Science Technology Engineering Mathematics Department, International University of Grand-Bassam, Bassam, Côte d’Ivoire. |
[2] | Zoro Diama E. G., Physics Department, Condensed Matter and Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan, Côte d’Ivoire. |
[3] | M. Grafoute, Physics Department, Condensed Matter and Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan, Côte d’Ivoire. |
[4] | V. Manu, Discipline of Inorganic Materials and Catalysis (DIMC), CSMCRI, Bhavnagar, India. |
[5] | F. J. Guehi, Physics Department, Condensed Matter and Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan, Côte d’Ivoire. |
[6] | A. F. Yebouet, Physics Department, Condensed Matter and Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan, Côte d’Ivoire. |
[7] | H. C. Bajaj, Discipline of Inorganic Materials and Catalysis (DIMC), CSMCRI, Bhavnagar, India. |
This paper studied the adsorption of argon and krypton onto Single Walled Carbon Nanotubes (SWCNTs) at liquid nitrogen temperature (77 K). The volumetric method was used to characterize our sample after purification by nitrogen adsorption. This method was also used to examine the effect of the size of molecules on the adsorption properties (energy and adsorption capacity) of SWCNTs and determined the adsorption sites. The results obtained show that the specific surface of the sample almost doubled after purification. This research showed that the energy and the adsorption capacity decrease when the molecule size increases; small molecules have access to all the adsorption sites of SWCNT and those of larger size do not adsorb in the lower interstitial channels. Finally, the studies have shown that the krypton does not adsorb in the micropores.
Keywords
Adsorption, Krypton, Argon, SWCNT, Adsorption Energy, Adsorption Capacity
Reference
[01] | IIJIMA S., Helical microtubules of graphitic carbon, Nature, 1991, P 56-58. |
[02] | N. Hamada, S. Shin-ichi, O. Atsushi, “New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett., 68 (10), (1992), 1579–1581. |
[03] | E. T. Thostenson, Z. Ren, T. W. Chou, Composites Science and Technology, (2001), 61, 1899–1912 |
[04] | M. Paillet, V. Jourdain, P. Poncharal, J.-L. Sauvajol, A. Zahab, J. C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret Versatile, “Synthesis of individual single walled carbon nanotubes from nickel nanoparticles for the study of their physical properties”, J. Phys. Chem. 108, (2004). |
[05] | Tae-jin P., Sarbajit B., Tirandai H., Stanislaus W. “Purification strategies and purity visualization techniques for single-walled carbon nanotubes” J. Mater. Chem. (2006), 141-154. |
[06] | Virginia Gomez, Silvia Irusta, Olawale B. Lawal, Wade Adams, Robert H. Hauge, Charles W. Dunnill, Andrew R. Barron, RSC Adv., (2016), 6, 11895-11902. |
[07] | A. Diama, V. Manu, M. Grafoute, H. C. Bajaj; Journal of Materials and applications, (2016), 2 (3), 25-29. |
[08] | A. Yaya, C. P. Ewels, Ph. Wagner, I. Suarez-Martinez, A. Gebramariam Tekley and L. Rosgaard Jensen, Eur. Phys. J. Appl. Phys., (2011), 54, 10401. |
[09] | K. A. G. Amankwah, J. S. Noh, J. A. Schwarz, “Hydrogen storage on superactivated carbon at refrigeration temperatures”, International journal of hydrogen energy, (1989), 437-447. |
[10] | R. Q. Long, R. T. Yang, “Carbon nanotubes as a superior sorbent for nitrogen oxides”, Ind. Eng., Chem. Res. (2001), 4288-4291. |
[11] | A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, (1997), 377-379. |
[12] | Srinivas Gadipelli, Zheng Xiao Guo, Progress in Materials Science, Volume 69, (2015), 1–60 |
[13] | M. Muris, N. D. Pavlovsky, M. Bienfait, P. Zepperfeld, “Where are the molecules adsorbed on single walled nanotubes”, Surface Science volume 992,(2001), 67-74. |
[14] | Svetlana Yu Tsareva, Edward McRae, Fabrice Valsaque, Xavier Devaux; Adsorption, (2015), Volume 21, Issue 3, 217–227. |
[15] | M. Repka, P. Lamp, “Physisorption of Hydrogen on Microporous Carbon and Carboon Nanotubes”, J. Phys. Chem. B. (1998), 102, 10894-10898. |
[16] | C. M. Yang, K. Kaneko, M. Yudasaka, S. Iijima, “Effect of purification on pore structure of HiPco single walled carbon nanotube aggregates”, Nano letters. 2, (2002), 385-388. |
[17] | M. R. Babaa, “Contribution à l’étude de l’adsorption physique de gaz sur les nanotubes de carbone mono- et multiparois” Thèse, (2004), 99-107. |
[18] | A. Thomy, X. Duval, J. Regnier, “Two dimensional phase transitions as displayed by adsorption isotherms on graphite and other lamellar solids”, Surf. Sci. (1981), 1-38. |
[19] | M. Seifi, D. K. Ross, D. J. Riley, I. Morrison, “The dependence of the Hydrogen sorption capacity of single-walled carbon nanotubes on the concentration of catalyst”, Department of Physics, University of Guilan, Rasht, 41335-1914. |