ISSN: 2375-3919
American Journal of Materials Research  
Manuscript Information
 
 
Effect of Annealing Times for LiTaSiO5 Thin Films on Structure, Nano Scale Grain Size and Band Gap
American Journal of Materials Research
Vol.1 , No. 1, Publication Date: Jul. 7, 2014, Page: 7-13
1797 Views Since July 7, 2014, 1310 Downloads Since Apr. 14, 2015
 
 
Authors
 
[1]    

Irzaman , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[2]    

Irmansyah , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[3]    

Heriyanto Syafutra , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[4]    

Ardian Arif , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[5]    

Husin Alatas , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[6]    

Yuli Astuti , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[7]    

Nurullaeli , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[8]    

Ridwan Siskandar , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[9]    

Aminullah , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[10]    

Gusti Putu Agus Sumiarna , Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.

[11]    

Zul Azhar Zahid Jamal , School of Microelectronic Engineering, Universiti Malaysia Perlis, Malaysia.

 
Abstract
 

This research was focused on structure, nano scale grain size, and band gap of LiTaSiO5. LiTaSiO5 thin films were manufactured by using chemical solution deposition (CSD) at annealing temperature of 800 oC for 1, 8, 15, and 22 hours, then reacted with p-type Si (100) substrates. The X-Ray Diffraction (XRD) results at 800 oC for 1, 8, 15, and 22 hours showed phase transformation from LiTaO3 into LiTaSiO5. The XRD and Atomic Force Microscopy (AFM) analysis were utilized for calculating nano scale grain size. The AFM can show more detail data than the XRD. The band gap energy which was resulted from Tauc plot, showed that LiTaSiO5 thin films belong to semiconductor materials.


Keywords
 

LiTaSiO5, Nano Scale, Grain Size, Band Gap Energy, Semiconductor


Reference
 
[01]    

Kostritskii S. M. et al. Quantitative evaluation of the electro-optic effect and second-order optical nonlinearity of lithium tantalate crystals of different compositions using Raman and infrared spectroscopy. Applied Physics B. 2005. doi: 10.1007/s00340-005-2046-4.

[02]    

Indro M N, Irzaman, Sastri B, Nady L, Syafutra H, Siswadi. Electric and Pyroelectric Properties of LiTaO3 and LiTaFe2O3. The International Conference on Materials Science and Technology. 1 (1) (2010), 303-308.

[03]    

Yan Tao et al. Formation mechanism of black LiTaO3 single crystals through chemical reduction. J. Appl. Cryst. 44 (2011), 158–162.

[04]    

Fang S, Wang B, Zhang T, Ling F and Wang R. Growth and photorefractive properties of Zn, Fe double-doped LiTaO3 crystal. Optical Materials. 28 (2006), 207-211.

[05]    

B.A. Baumert, L.H. Chang, A.T. Matsuda and C.J. Tracy. A Study of BST Thin Films for Use in bypass Capacitors. J. Mater. Res. 13 (1998), (1): 197.

[06]    

F. Wang, A. Uusimaki, S. Leppavuori, S.F. Karmanenko, A.I. Dedyk, V.I. Sakharov, I.T. Serenkov. BST Ferroelectric Film Prepared with Sol-Gel Process and Its Dielectric Performance in Planar Capacitor Structure. J. Mater. Res. 13 (1998), (5): 1243.

[07]    

M.A. Itskovsky. Kinetics of Ferroelectric Phase Transition : Nonlinear Pyroelectric Effect and Ferroelectric Solar Cell. Jpn. J. Appl. Phys. 38 (1999), (8): 4812.

[08]    

Irzaman, Darmasetiawan H, Hardhienata H, Erviansyah R, Akhiruddin, Hikam M, Arifin P. Electrical Properties of Photodiode BST Thin Film Doped with Ferrium Oxide using Chemical Deposition Solution Method. Journal Atom Indonesia, Batan. 6 (2010), (2): 57-62.

[09]    

E.S. Choi, J.C. Lee, J.S. Hwang, S.G. Yoon. Electrical Characteristics of The Contour Vibration Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio. Jpn. J. Appl. Phys. 38 (1999), (9B): 5317.

[10]    

S. Momose, T. Nakamura, K. Tachibana. Effects of Gas Phase Thermal Decompositions of Chemical Vapor Deposition Source Moleculeson The Deposition of BST Films. Jpn. J. Appl. Phys. 39 (2000 ), (9B): 5384.

[11]    

M. Izuha, K. Ade, M. Koike, S. Takeno, N. Fukushima. Electrical Properties and Microstructure of Pt/BST/SrRuO3 Capacitors. Appl. Phys. Lett. 70 (1997 ), (11): 1405.

[12]    

J.S. Lee, J.S. Park, J.S. Kim, J.H. Lee, Y.H. Lee, S.R. Hahn. Preparation of BST Thin Films with High Pyroelectric Coefficients an Ambient Temperatures. Jpn. J. Appl. Phys. 38 (1999 ), (5B): L574.

[13]    

S. Kim, T.S. Kang, J.H. Je. Structural Characterization of Laser Alblation Epitaxial BST Thin Films on MgO (001) by Synchrotron x-Ray Scattering. J. Mater. Res. 14 (1999), (7): 2905.

[14]    

Irzaman, Maddu A, Syafutra H and Ismangil A. Uji konduktivitas listrik dan dielektrik film tipis lithium tantalate (LiTaO3) yang didadah niobium pentaoksida (Nb2O5) menggunakan metode chemical solution deposition. Di dalam: prosiding seminar nasional fisika. hlm 175-183. 2010. (In Indonesia)

[15]    

I. Ratera, J. Chen1, A Murphy, D.F. Ogletree1, J.M.J. Fr´echet and M. Salmeron. Atomic force microscopy nanotribology study of oligothiophene self-assembled films. Nanotechnology. 16 (2005), S235.

[16]    

P.D. Sawant and D V Nicolau. Hierarchy of DNA immobilization and hybridization on poly-L- lysine: an atomic force microscopy study. I Institute of Physics Publishing Smart Materials and Structures. Smart Mater. Struct. 15 (2006), S99–S103.

[17]    

B.D. Cullity. Element of X-RAY DIFFRACTION second edition. London: addison-wesley publishing company, INC. 1978.

[18]    

Suryanarayana C and Norton M G. X-Ray Diffraction A Practical Approach. New York: Plenum Press. 1998.

[19]    

Gonzalez A H M, Simoes A Z, Zaghete M A and Varela J A. Effect of preannealing on the morphology of LiTaO3 thin films prepared from the polymeric precursor method. Materials Characterization. 50 (2003), 233-238.

[20]    

Tagami Y, Ikigai H, Oishi Y. AFM observations of (DMPC/cholesterol) mixed monolayer on aqueous solution of Vibrio cholerae hemolysin. Colloids and Surfaces A: Physicochem. Eng. Aspects. (2006), 284–285. 475–479.

[21]    

Pang C L, Ashworth T V, Raza H, Haycock S A, Thornton G. A non-contact atomic force microscopy and ‘force spectroscopy’ study of charging on oxide surfaces. Nanotechnology 15 (2004), 862–866.

[22]    

Guilfoyleyx S J, Chewyk A, Moiseiwitschz N E, Sykesyk D E, Pettyyk M. Atomic force microscopy investigation of polysilicon films before and after SIMS analysis: the effects of sample rotation. J. Phys: Condens. Matter. 10 (1998), 1699–1706.

[23]    

Feng W, Ding Y, Liu Y, Lu R. The photochromic process of polyoxometalate-based nanocomposite thin film by in situ AFM and spectroscopy. Materials Chemistry and Physics. 98 (2006), 347–352.

[24]    

Lobo R F M, Pereira-da-Silva M A, Raposo M, Faria R. M, and Jr O N Oliveira. The morphology of layer-by-layer films of polymer/polyelectrolyte studied by atomic force microscopy. Nanotechnology. 14 (2003), 101–108.

[25]    

Mazher J, Shrivastav A K, Nandedkar R V and Pandey R K. Strained ZnSe nanostructures investigated by x-ray diffraction, atomic force microscopy, transmission electron microscopy and optical absorption and luminescence spectroscopy. Nanotechnology. 15 (2004), 572–580.

[26]    

Hishida M, Seto H, Kaewsaiha P, Matsuoka H, dan Yoshikawa K. Stacking structures of dry phospholipid films on a solid substrate. Colloids and Surfaces A: Physicochem. Eng. Aspects. (2006), 284–285;444–447.

[27]    

Stark R W. Spectroscopy of higher harmonics in dynamic atomic force microscopy. Nanotechnology 15 (2004), 347–351.

[28]    

H Ju-Hung, H Ming-Hung, L Hsiao-Hsien and L Heh-Nan. Selective growth of silica nanowires on nickel nanostructures created by atomic force microscopy nanomachining. Nanotechnology. 17 (2006), 170–173.

[29]    

Porti M, Nafr´ıa M, Aymerich X, Olbrich A and Ebersberger B. Post-breakdown electrical characterization of ultrathin SiO2 films with conductive atomic force microscopy. Nanotechnology. 13 (2002), 388–391.

[30]    

Miyake S and Kim J. Nanoprocessing of silicon by mechanochemical reaction using atomic force microscopy and additional potassium hydroxide solution etching. Nanotechnology. 16 (2005), 149–157.

[31]    

Sun Y and Pang John H L. AFM image reconstruction for deformation measurements by digital image correlation. Nanotechnology. 17 (2006), 933–939.

[32]    

Trevethan T and Kantorovich L. Models of atomic scale contrast in dissipation images of binary ionic surfaces in non-contact atomic force microscopy. Nanotechnology. 17 (2006), S205–S212.

[33]    

Sushko M L, Gal A Y, Watkins M and Shluger A L. Modelling of non-contact atomic force microscopy imaging of individual molecules on oxide surfaces. Nanotechnology. 17 (2006), 2062–2072

[34]    

Ryan P J, Adams G G, McGruer N E, and Muftu S. Contact scanning mode AFM for nanomechanical testing of free-standing structures. J. Micromech. Microeng. 16 (2006), 1040–1046.

[35]    

Irzaman, Marwan A. Arief A, Hamdani R A, Komaro M. Electrical Conductivity and Surface Roughness Properties of Ferroelectric Gallium Doped BST Thin Film. Indonesian Journal of Physics, Departemen of Physics FMIPA ITB. (2008), 119-121.

[36]    

Irzaman, Darmasetiawan H, Hardhienata H, Hikam M, Arifin P, Jusoh S N, Taking S, Jamal Z, Idris M A. Surface Roughness and Grain Size Characterization of Effect of Annealing Temperature for Growth Gallium and Tantalum Doped Ba0.5Sr0.5TiO3 Thin Film. Journal Atom Indonesia, Batan. 35 (2009), (1): 57-67.

[37]    

Irzaman, Barmawi M, Crystallography and Surface Morphology of Ta2O5 Doped PZT Thin Film. Jurnal Sains MIPA, FMIPA Universitas Lampung. 13 (2007 ), (2): 84-88.

[38]    

Irzaman, Jamal Z, Idris M S, Kurnia D, Barmawi M. Microstrain, Particle Size and Lattice Constant of CaCO3 Ceramic by Rietveld Analysis. An International Publication of The Malaysia Nuclear Society (MNS). 4 (2007 ), (1): 43-46.

[39]    

Adamson A R. Physical Chemistry of Surfaces Fourth Edition. California: John Wiley & Sons, Inc. 1982.

[40]    

Youssef S, Al Amar R, Podlecki J, Sorli B and Foucaran A. Structural and optical characterization of oriented LiTaO3 thin films deposited by sol-gel technique [abstract]. Eur. Phys. J. Appl. Phys. 43 (2008 ), (1): 65-71.

[41]    

Cabuk S and Mamedov A. A Study of the LiNbO3 and LiTaO3 Absorption Edge. Tr. J. of Physics. 22 (1998), 41-45.

[42]    

Muktavat K and Upadhayaya A K. Applied Physics. New Delhi: L.K. International publishing House Pvt. Ltd. 2010.

[43]    

Irzaman, Syafutra H, Rancasa E, Nuayi A W, Rahman T G N, Nuzulia N A, Supu I, Sugianto, Tumimomor F, Surianty, Muzikarno O, Masrur. The Effect of Ba/Sr ration Electrical and Optical Properties of BaxSr(1-x)TiO3 (x= 0.25; 0.35; 0.45; 0.55) Thin Film Semiconductor. Ferreoelectrics. (2013), 445 (1), 4 – 17.

[44]    

Darmasetiawan H, Irzaman, Indro M N, Sukaryo S G, Hikam M, Bo N P. Optical Properties of Crystalline Ta2O5 Thin Films. Physica Status Solidi (a), Germany. 193 (2002), (1), 53-60.

[45]    

Irzaman, Darvina Y, Fuad A, Arifin P, Budiman M, Barmawi M. Physical and Pyroelectric Properties of Tantalum Oxide Doped Lead Zirconiuum Titanate [Pb0.9950(Zr0.525Ti0.465Ta0.010)O3] Thin Films and Its Application for IR Sensor. Physica Status Solidi (a), Germany. 199 (2003), (3): 416-424.

[46]    

Raksa Y T, Hikam M, Irzaman. Rietveld Analysis of Ferroelectric Pb Zr0.525Ti0.475O3 Thin Films. Ceramics International. 30 (2004), 1483-1485.

[47]    

Ivanov S, Zhurov V and Karpov Inst. 1994. Of Physical Chemistry, Moscow, Russia, ICDD Grant-in-Aid (JCPDS file 45-0644).

[48]    

Sze, S M. Physics of Semiconductor Devices. New Jersey : John Wiley & Sons, Inc. 1981.

[49]    

Hedge R, GS Bhat, B Deshpande. Morphology and properties of nylon 6 blown films reinforced with different weight percentage of nanoclay additives, International Journal of Polymer Science, 2012.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership