






Vol.3 , No. 1, Publication Date: May 13, 2016, Page: 1-5
[1] | Éverton de Oliveira Paiva, Management of Educational Institutions - GIED, Federal University of Jequitinhonha and Mucuri Valleys – UFVJM, Diamantina, Brazil. |
[2] | Marcus Vinicius Carvalho Guelpeli, Department of Computing – DECOM, Federal University of Jequitinhonha and Mucuri Valleys – UFVJM, Diamantina, Brazil. |
Using computer systems as a complement or replacement for the classroom experience is an increasingly common practice in education, and Intelligent Tutoring Systems (ITS) are one of these alternatives. Therefore, it is crucial to develop ITS that are capable of both teaching and learning relevant information about the student through artificial intelligence techniques. This learning process occurs by means of direct, and generally slow, interaction between the ITS and the student. This article presents the insertion of meta-heuristic Tabu search with the purpose of accelerating learning. Computer simulations were conducted in order to compare the performance of traditional randomized search methods with the meta-heuristic Tabu search. Results obtained from these simulations strongly indicate that the introduction of meta-heuristics in exploration policy improves the performance of the learning algorithm in STI.
Keywords
Intelligent Tutoring System, Autonomous Model, Q-Learning, Convergence Improvement, Tabu Search
Reference
[01] | Freedman, R. What is an intelligent tutoring system? The International Journal of Artificial Intelligence in Education, 2000. |
[02] | Li, D.; Zhou, H. H. An intelligent tutoring system with an automated knowledge acquisition mechanism. IEEE International Conference on Computational Intelligence & Communication Technology, 2015. |
[03] | Palomino, C. E. G. Modelo de Sistema Tutorial e Inteligente para Ambientes Virtuais de Aprendizagem baseado em Agentes. Dissertação (Mestrado) — Universidade Federal de Santa Catarina, 2013. |
[04] | Norving, P.; Russell, S. Inteligência Artificial. 3. ed. Rio de Janeiro: Elsevier, 2013. |
[05] | Littman, M. L.; Szepesvari, C. A Generalized Reinforcement-Learning Model. USA, 1996. |
[06] | Guelpeli, M. V. C.; Omar, N.; Ribeiro, C. H. C. Aprendizado por reforço para um sistema tutor inteligente sem modelo explícito do aprendiz. Revista Brasileira de Informática na Educação, v. 12, n. II, p. 69 – 77, 2004. |
[07] | Watkins, C. J. H. Learning from delayed rewards: Convergence and applications. Tese (Doutorado) — University of Cambridge, 1989. |
[08] | Zhang, X.; Liu, Z. An optimized q-learning algorithm based on the thinking of tabu search. International Symposium on Computational Intelligence and Design, p. 533–536, http://ieeexplore.ieee.org/xpl/articleDetails.jsp? Arnumber=4725666. |
[09] | Javadi, S. L.; Masoumi, B.; Meybodi, M. R. Improving student’s modeling framework in a tutorial-like system based on pursuit learning automata and reinforcement learning. International Conference on Education and e-Learning Innovations, 2012. |
[10] | Deepthi, P. R.; Sasikumar, M. Student model for an intelligent language tutoring system. IEEE 14th International Conference on Advanced Learning Technologies (ICALT), p. 441–443, 2014. |
[11] | Glover, F. Future paths for integer programming and links to artificial intelligence. Computers an Operations Research, p. 533–549, 1986. |
[12] | Glover, F.; Laguna, M. Tabu search. Kluwer Academic Publishers, 1997. |
[13] | Bianchi, R. A. C.; Costa, A. H. R. Uso de heurísticas para a aceleração do aprendizado por reforço. XXV Congresso da Sociedade Brasileira de Computação, 2005. |
[14] | Kerby, D. S. The simple difference formula: An approach to teaching nonparametric correlation. Innovative Teaching, v. 3, n. 1, 2014. http://www.amsciepub.com/doi/pdf/10.2466/11.IT.3.1 |