ISSN: 2375-3870
International Journal of Modern Physics and Application  
Manuscript Information
 
 
Thermomagnetic Effects in an External Magnetic Field in the Logarithmic-Quark Sigma Model
International Journal of Modern Physics and Application
Vol.4 , No. 6, Publication Date: Nov. 16, 2017, Page: 49-54
621 Views Since November 16, 2017, 783 Downloads Since Nov. 16, 2017
 
 
Authors
 
[1]    

Mohamed Abu-Shady, Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt.

 
Abstract
 

The phenomenon of magnetic catalysis of chiral symmetry breaking in the quantum chromodynamic theory in the framework of logarithmic quark sigma model is studied. Thermodynamic properties are calculated in the mean-field approximation such as the pressure, the entropy density, the energy density, and the measure interaction. The pressure, the entropy density, and the energy density increase with increasing temperature and/or an external magnetic field. The critical temperature increases with increasing an external magnetic field. In addition, the chiral phase transition is crossover in the presence of an external magnetic field at absent of baryonic chemical potential when explicit symmetry breaking is included. A comparison is presented with the original sigma model and other works. A conclusion indicates that the logarithmic quark model enhances the magnetic catalysis phenomenon.


Keywords
 

Chiral Lagrangian Density, Magnetic Catalysis, Mean-Field Approximation


Reference
 
[01]    

G. S. Bali, F. Bruckmann, G. Endrődi, S. D. Katz, A. Schafer, J. High Energy Phys. 177, 35 (2014).

[02]    

G. N. Ferrari, A. F. Garcia, and M. B. Pinto, Phys. Rev. D 86, 096005 (2014).

[03]    

A. N. Tawfik, A. M. Diab, N. Ezzelarab, A. G. Shalaby, Advances in High Energy Physics 2016, 1381479 (2016).

[04]    

R. L. S. Farias, V. S. Timoteo, S. S. Avancini, M. B. Pinto, G. Krein, hep-ph\1603.03847 (2016).

[05]    

M. Birse and M. Banerjee, Phys. Rev. D 31, 118 (1985).

[06]    

R. Gatto and M. Ruggier D 83, 040163 (2011).

[07]    

S. S. Avancini, D. P. Menezes and C. Providencia, C 83, 065805 (2011).

[08]    

M. Gell-Mann and M. Levy, Nuono Cinmento 16, 705 (1960).

[09]    

M. Abu-Shady, Inter. J. Mod. Phys. A 26, 235 (2011).

[10]    

T. S. T. Aly, M. Rashdan, and M. Abu-Shady, Inter. J. Theor. Phys. 45, 1645 (2006).

[11]    

M. Abu-Shady and M. Soleiman, Phys. Part. and Nuclei Lett. 10, 683 (2013).

[12]    

M. Abu-Shady, Inter. J. Theor. Phys. 48 (4), (2009).

[13]    

M Abu-Shady, Inter. J. of Mod. Phys. E 21 (06), 1250061 (2012).

[14]    

M. Abu-Shady, Inter. J. Mod. Phys. A 26, 235 (2011).

[15]    

M. Abu-Shady, Mod. Phys. Lett. A 29, 1450176 (2014).

[16]    

M Abu-Shady, Inter. J. Theor. Phys. 48, 115-126 (2009).

[17]    

M. Abu-Shady and A. Abu-Nab, the Euro. Phys. J. Plus 130, 248 (2015).

[18]    

M. Abu-Shady, Applied Math. and Information Sciences Lett. 4, 5 (2016).

[19]    

A. Goyal and M. Dahiya, Phys. Rev. D 62, 025022 (2011).

[20]    

S. P. Klevansky and R. H. Lemmar, Phys. Rev. D 39, 3478 (1989).

[21]    

I. A. Shushpanov and A. V. Smilga, Phys. Lett. B 16, 402 (1997).

[22]    

I. A. Shushpanov and A. V. Smilga, Phys. Lett. B 16, 351 (1997).

[23]    

H. Suganuma and T. Tastsumi, Annals. Phys. 208, 470 (1991).

[24]    

K. G. Klimenko and T. Mat. Fiz. 89, 211 (1991).

[25]    

V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phy. Rev. Lett. 73, 3499 (1994).

[26]    

A. J. Mizher, M. N. Chernoub, and E. S. Fraga, Phys. Rev. D 82, 105016 (2010).

[27]    

M. D. Elia, S. Mukherjee and F. Sanfilippo, Phys. Rev. D 82, 051501 (2010).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership