






Vol.4 , No. 4, Publication Date: Aug. 8, 2017, Page: 19-23
[1] | Xu-Dong Liu, Department of Physics, College of Physical Science and Technology, Sichuan University, Chengdu, China. |
[2] | Yan He, Department of Physics, College of Physical Science and Technology, Sichuan University, Chengdu, China. |
The one dimensional transverse field Ising model is an exact solvable model which is a demonstrating example of quantum critical point. The ground state of the transverse field Ising model allows two types of partitioning, one in real space and one in momentum space, which leads to two different types of entanglement entropies. Although qualitative behavior of the two entanglement entropies away from the quantum critical point agrees, only the real-space entanglement entropy exhibits observable features at the critical point.
Keywords
Entanglement Entropy, Transverse Field Ising Model, Jordan-Wigner Transformation, Fermion Number Parity
Reference
[01] | E. H. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys. 16, 407 (1961). |
[02] | P. Pfeuty, Ann. Phys. 57, 79 (1970). |
[03] | S. Sachdev, Quantum phase transitions, 2nd ed. (Cambridge University Press, Cambridge, UK, 2011). |
[04] | S. Suzuki, J. I. Inoue, and B. K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 2013). |
[05] | A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F. Rosenbaum, and D. Sen, Quantum phase transitions in transversefield spin models (Cambridge Unversity Press, Cambridge, UK, 2015). |
[06] | P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928). |
[07] | I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267 (2012). |
[08] | C. C. Chien, S. Peotta, and M. Di Ventra, Nat. Phys. 11, 998 (2015). |
[09] | K. Kim, S. Korenblit, R. Islam, E. E. Edwards, M. S. Chang, C. Noh, H. Carmichael, G. D. Lin, L. M. Duan, C. C. J. Wang, J. K. Freericks, and C. Monroe, New J. Phys. 13, 105003 (2011). |
[10] | R. Blatt and D. Wineland, Nature 453, 1008 (2008). |
[11] | J. M. Cui, etc, Sci. Rep. 6, 33381 (2016). |
[12] | Y. Salathe, etc, Phys. Rev. X 5, 021027 (2015). |
[13] | T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964). |
[14] | M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000). |
[15] | L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: The holographic universe (World Scientific Publishing, Singapore, 2005). |
[16] | G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003). |
[17] | J. I. Latorre, E. Rico, and G. Vidal, Quant. Inf. Comput. 4, 48 (2004). |
[18] | G. Vitiello, in Quantum Analogues, From Phase Transitions to Black Holes and Cosmology, edited by W. G. Unruh and R. Schutzhold (Springer, 2007). |
[19] | H. Guo, Y. He, and C. C. Chien, Phys. Lett. A 381, 351 (2017). |
[20] | J.-J. Dong, P. Li, and Q.-H. Chen, (2015), arXiv:1512.06964. |
[21] | J.-J. Dong, P. Li, and Q.-H. Chen, J. Statist. Mech.: Theor. Exp. 2016, 113102 (2016). |
[22] | P. Calabrese and J. Cardy, J. Statist. Mech.: Theor. Exp. 2004, P06002 (2004). |
[23] | M. Srednicki, Phys. Rev. Lett. 71, 666 (1993). |
[24] | A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner, Science 353, 794 (2016). |