ISSN: 2375-3870
International Journal of Modern Physics and Application  
Manuscript Information
 
 
The Entanglement Entropy of Transverse Field Ising Model
International Journal of Modern Physics and Application
Vol.4 , No. 4, Publication Date: Aug. 8, 2017, Page: 19-23
609 Views Since August 8, 2017, 2439 Downloads Since Aug. 8, 2017
 
 
Authors
 
[1]    

Xu-Dong Liu, Department of Physics, College of Physical Science and Technology, Sichuan University, Chengdu, China.

[2]    

Yan He, Department of Physics, College of Physical Science and Technology, Sichuan University, Chengdu, China.

 
Abstract
 

The one dimensional transverse field Ising model is an exact solvable model which is a demonstrating example of quantum critical point. The ground state of the transverse field Ising model allows two types of partitioning, one in real space and one in momentum space, which leads to two different types of entanglement entropies. Although qualitative behavior of the two entanglement entropies away from the quantum critical point agrees, only the real-space entanglement entropy exhibits observable features at the critical point.


Keywords
 

Entanglement Entropy, Transverse Field Ising Model, Jordan-Wigner Transformation, Fermion Number Parity


Reference
 
[01]    

E. H. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys. 16, 407 (1961).

[02]    

P. Pfeuty, Ann. Phys. 57, 79 (1970).

[03]    

S. Sachdev, Quantum phase transitions, 2nd ed. (Cambridge University Press, Cambridge, UK, 2011).

[04]    

S. Suzuki, J. I. Inoue, and B. K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 2013).

[05]    

A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F. Rosenbaum, and D. Sen, Quantum phase transitions in transversefield spin models (Cambridge Unversity Press, Cambridge, UK, 2015).

[06]    

P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

[07]    

I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267 (2012).

[08]    

C. C. Chien, S. Peotta, and M. Di Ventra, Nat. Phys. 11, 998 (2015).

[09]    

K. Kim, S. Korenblit, R. Islam, E. E. Edwards, M. S. Chang, C. Noh, H. Carmichael, G. D. Lin, L. M. Duan, C. C. J. Wang, J. K. Freericks, and C. Monroe, New J. Phys. 13, 105003 (2011).

[10]    

R. Blatt and D. Wineland, Nature 453, 1008 (2008).

[11]    

J. M. Cui, etc, Sci. Rep. 6, 33381 (2016).

[12]    

Y. Salathe, etc, Phys. Rev. X 5, 021027 (2015).

[13]    

T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964).

[14]    

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).

[15]    

L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: The holographic universe (World Scientific Publishing, Singapore, 2005).

[16]    

G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).

[17]    

J. I. Latorre, E. Rico, and G. Vidal, Quant. Inf. Comput. 4, 48 (2004).

[18]    

G. Vitiello, in Quantum Analogues, From Phase Transitions to Black Holes and Cosmology, edited by W. G. Unruh and R. Schutzhold (Springer, 2007).

[19]    

H. Guo, Y. He, and C. C. Chien, Phys. Lett. A 381, 351 (2017).

[20]    

J.-J. Dong, P. Li, and Q.-H. Chen, (2015), arXiv:1512.06964.

[21]    

J.-J. Dong, P. Li, and Q.-H. Chen, J. Statist. Mech.: Theor. Exp. 2016, 113102 (2016).

[22]    

P. Calabrese and J. Cardy, J. Statist. Mech.: Theor. Exp. 2004, P06002 (2004).

[23]    

M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

[24]    

A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner, Science 353, 794 (2016).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership