






Vol.1 , No. 2, Publication Date: Aug. 8, 2014, Page: 15-20
[1] | Manuel Malaver, Universidad Marítima del Caribe, Departamento de Ciencias Básicas, Catia la Mar, Venezuela. |
In this paper, we studied the behavior of relativistic objects with anisotropic matter distribution in the presence of an electric field considering a gravitational potential Z(x) of Thirukkanesh and Ragel (2013) which depends on an adjustable parameter n. The equation of state presents a quadratic relation between the energy density and the radial pressure. New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as a variation of the adjustable parameter n causes a modification in the charge density, the radial pressure and the mass of the stellar object.
Keywords
Relativistic Objects, Electric Field, Gravitational Potential, Adjustable Parameter, Einstein-Maxwell System, Charge Density
Reference
[01] | Kuhfitting, P.K. (2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367. |
[02] | Bicak, J. (2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173. |
[03] | Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9. |
[04] | Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel.Grav., 39, 2079-2093. |
[05] | Sharma, R., Mukherjee, S and Maharaj, S.D. (2001). General solution for a class of static charged stars, Gen.Rel. Grav., 33, 999-110. |
[06] | Schwarzschild, K. (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Math.Phys.Tech, 424-434. |
[07] | Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373. |
[08] | Oppenheimer, J.R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev., 55, 374-381. |
[09] | Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82. |
[10] | Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae, Proc. Nat.Acad.Sci.U.S., (20), 259-263. |
[11] | Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int.J.Mod. Phys., D16, pp. 1803-1811. |
[12] | Herrera, L., and Santos, N.O. (1997), Phys. Rep.286, 53. |
[13] | Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J.Math.Phys., 22(1), 118. |
[14] | Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen.Relat.Grav., 26(1), 75-84. |
[15] | Herrera, L. (1992), Phys.Lett., A165, 206. |
[16] | Sokolov. A.I. (1980), Sov. Phys.JETP., 52, 575. |
[17] | Herrera,L., Ruggeri, G.J and Witten. L. (1979), Astrophys.J., 234, 1094. |
[18] | Herrera, L., and Ponce de Leon. J. (1985), J.Math.Phys., 26, 2018. |
[19] | Herrera, L., and Santos.N.O. (1998), J.Math.Phys., 39, 3817. |
[20] | Bondi.H.(1992), Mon.Not.R.Astron.Soc., 259, 365. |
[21] | Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133. |
[22] | Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001. |
[23] | Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics, 81(2), 275-286. |
[24] | Feroze, T.. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035. |
[25] | Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15. |
[26] | Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969. |
[27] | Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696. |
[28] | Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 37-42. |
[29] | Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state World Applied Programming., 3, 309-313. |
[30] | Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int.J.Mod.Phys, D13, 149-156. |
[31] | Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys.Rev. D27, 328-331. |