






Vol.3 , No. 1, Publication Date: Jan. 7, 2016, Page: 6-13
[1] | Manuel Malaver, Maritime University of the Caribbean, Department of Basic Sciences, Catia la Mar, Venezuela. |
In this paper, we found new exact solutions to the Einstein-Maxwell system of equations for quark stars within the framework of MIT-Bag Model considering modified Tolman IV type potential for the gravitational potential Z which depends on an adjustable parameter n and a particular form for the electric field intensity. The anisotropic matter distribution satisfies a linear equation of state consistent with quark matter. The exact solutions can be written in terms of elementary and polynomial functions in presence of an electromagnetic field. All the obtained solutions have a singularity in the charge density but do not admit singularities in the matter and metric functions. We show as a variation of the adjustable parameter causes a modification in the charge density, the electric field intensity, the radial pressure, the tangential pressure, the metric functions and the mass of the stellar object. A graphical analysis indicates that the obtained models satisfy all physical features expected in a realistic star.
Keywords
Exact Solutions, Quark Stars: Anisotropic Matter Distribution, MIT–Bag Model, Tolman IV Potential, Einstein-Maxwell System
Reference
[01] | Kuhfitting, P.K. (2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367. |
[02] | Bicak, J. (2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173. |
[03] | Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9. |
[04] | Komathiraj, K., and Maharaj, S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093. |
[05] | Sharma, R., Mukherjee, S and Maharaj, S.D. (2001). General solution for a class of static charged stars, Gen.Rel. Grav., 33, 999-110. |
[06] | Bowers, R. L., Liang, E. P. T.: Astrophys. J., 188, 657 (1974). |
[07] | Cosenza, M., Herrera, L., Esculpi, M.and Witten, L.(1981), J. Math. Phys., 22(1), 118. |
[08] | Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav., 26(1), 75-84. |
[09] | Sokolov. A.I. (1980), Sov. Phys. JETP., 52, 575. |
[10] | Usov, V. V.: Phys. Rev. D, 70, 067301 (2004). |
[11] | Komathiraj, K., and Maharaj, S.D. (2007). Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811. |
[12] | Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133. |
[13] | Malaver, M. AASCIT Communications, 1,48-51 (2014). |
[14] | Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001. |
[15] | Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J. Plus., 129, 3. |
[16] | Thirukkanesh, S., and Ragel, F.C. (2013).A class of exact strange quark star model, PRAMANA-Journal of physics, 81(2), 275-286. |
[17] | Sunzu, J.M, Maharaj, S.D and Ray, S. (2014). Astrophysics. Space. Sci. 354,517-524. |
[18] | Feroze, T.. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035. |
[19] | Feroze, T,. and Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society, 65(6), 944-947. |
[20] | Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15. |
[21] | Malaver, M. (2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application, 2(1), 1-6. |
[22] | Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel. Grav., 45, 1951-1969. |
[23] | Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696. |
[24] | Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46. |
[25] | Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313. |
[26] | Thirukkanesh, S., and Ragel, F.C. (2014). Strange star model with Tolmann IV type potential, Astrophysics and Space Science, 352(2), 743-749. |
[27] | Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys, D13, 149-156. |
[28] | Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys. Rev. D27, 328-331. |
[29] | Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373. |