ISSN: 2375-3870
International Journal of Modern Physics and Application  
Manuscript Information
 
 
Modern Physics Solution of the Saturn Rings Origin Problem – Electromagnetism and Superconductivity (The Possibility of the Unified Theory of the Planetary Rings Origin)
International Journal of Modern Physics and Application
Vol.2 , No. 5, Publication Date: Sep. 22, 2015, Page: 65-72
1240 Views Since September 22, 2015, 934 Downloads Since Sep. 22, 2015
 
 
Authors
 
[1]    

V. V. Tchernyi, Modern Science Institute at SAIBR, Moscow, Russia.

[2]    

A. Yu. Pospelov, Modern Science Institute at SAIBR, Moscow, Russia.

 
Abstract
 

Low temperature near Saturn and presence of a planetary magnetic bring us an idea of the possible existence of the superconductivity of the particles forming rings system. Experimental study has confirmed this suggestion. Rings can be a result of the interaction of the superconducting carbon doped ice particles of the protoplanetary cloud with the nonuniform planetary magnetic field. After appearance of the magnetic field of planet all particles receive additional movement due to Meissner-Ochsenfeld phenomenon. Their Kepler’s chaotic orbits start to shift to the magnetic equator plane and create the system of rings and gaps like an iron particles nearby magnet on laboratory table. The particles itself do not stuck together because they separated by magnetic field which is getting out from each one of them. Also gravity resonances of planet, it satellites and rings particles as well as other interactions play an important role in formation of the final ring’s picture. The same scenario is applicable to the origin of the rings of Jupiter, Uranus and Neptune located behind the asteroid belt.


Keywords
 

Space Electromagnetism, Space Superconductivity, Saturn Rings Origin, Planetary Rings Origin


Reference
 
[01]    

Maxwell, J. C., Brush, S. G., Everitt, C. W. F., Garber, E. (Eds.). (1983). Maxwell on Saturn’s rings. MIT Press, Cambridge, MA.

[02]    

Safronov, V. S. (1969). Evolution of protoplanetary cloud and formation of the Earth and planets. Nauka, Moscow, (Russian).

[03]    

Alfven, H. (1981). Solar system history as recorded in the Saturnian ring structure”, Astrophysics and Space Science, 97, 79-94.

[04]    

Mendis, D. A., Hill, J. R., Ip, W. H., Goertz, C. K., Grun, E. (1984). Electrodynamics Processes in the Ring System of Saturn. Saturn. T. Gehrels, M. Mathews (Eds.), University of Arizona Press, Tucson, 546-589.

[05]    

Morrison, D., Owen, T. C. (2003). The Planetary System, Addison-Wesley Longman.

[06]    

Gor’kavyi, N. N., Fridman, A. M. (1994). Physics of the planetary rings: celestial mechanics of continuous medium. Nauka, Moscow, (Russian).

[07]    

Spilker, L. J. (Ed.). (Oct. 1997). The Cassini-Huygens mission to Saturn and Titan. NASA SP-533, JPL, Caltech, Washington, D.C.

[08]    

Rowan, L., Sanchez-Lavega, A., Gombosi, T. I., Hansen, K. S., Porco, C. C. et al., Flasar, F. M., Esposito L. W. et al., Gurnett D. A. et al., Waite, J. H., Jr. et al., Young, D. T. et al., Dougherty, M. K. et al., Krimigis, S. M. et al., Kempf, S. et al. (2005). Cassini at Saturn. Science, 307, 1222–1276. Doi.org/10.1126/science.307.5713.1222

[09]    

Dougherty, M., Esposito, L., Krimigis, T. (Eds.). (2009). Saturn from Cassini-Huygens, Springer, Dordrecht, Doi.org/10.1007/978-1-4020-9217-6

[10]    

Cuzzi, J. N., Burns, J. A., Charnoz, S., Clark, R.N., Colwell, J. E., Dones, L., Esposito, L. W., Filacchione, G., French, R. G., Hedman, M. M., Kempf, S., Marouf, E. A., Murray, C. D., Nicholson, P. D., Porco, C. C., Schmidt, J., Showalter, M.R., Spilker, L. J., Spitale, J. N., Srama, R., Sremčević, M., Tiscareno, M. S., Weiss, J. (2010). An evolving view of Saturn’s dynamic rings. Science. 327, 1470-1475. Doi.org/10.1126/science. 1179118

[11]    

Brilliantov N., Krapivsky P. L., Bodrova A., Spahn F., Hayakawa H., Stadnichuk V., Schmidt J. (2015). Size distribution of particles in Saturn’s rings from aggregation and fragmentation. Proceedings of the National Academy of Sciences, 112 (31): 9536; Doi: 10.1073/pnas.1503957112; aRxive 1302.4097v5; Guimarães Ana H. F., Albers N., Spahn F., Seiß M., Vieira-Neto E., Brilliantov N. V. (2012). Aggregates in the strength and gravity regime: particles size in the Saturn’s rings. Icarus, 220, 2, 660–678. Doi.org/10.1016/j.icarus.2012.06.005

[12]    

A. Yu. Pospelov, V. V. Tchernyi, “Electromagnetic properties material forecast in the planet rings by the methods of functionally physical analysis” (1995), Proc. Intern. Scientific-Methodological Conf. on Innovative Design in Education, Techniques and Technologies, Volgograd State Technical University, Volgograd (Russian), 75-77.

[13]    

Pospelov, A. Yu., Tchernyi, V. V., Girich, S. V. (1998). Planet’s rings: super-diamagnetic model and new course of investigations. Proc. SPIE 42nd Annual meet, San Diego, CA, 1997 July 27- Aug. 1 Small Spacecraft, Space Environments and Instrumentation Technologies, SPIE, 3116, 117-128;

[14]    

Girich, S. V., Pospelov, A. Yu., Tchernyi, V. V. (1998). Radar data explanation via superdiamagnetic model of the Saturn’s rings. Annual Report of AAS, 30th Meeting Division of Planetary Science, Madison, WI, 1998 Oct. 11-16, Bulletin of the American Astronomical Society, 30, 1043.

[15]    

Pospelov, A. Yu., Tchernyi, V. V., Girich, S. V. (1999 Aug. 20). Are Saturn rings superconducting? University of Alabama, Huntsville, NASA Marshall Space Flight Center. Huntsville Space Physics Colloquium.

[16]    

Tchernyi, V. V., Pospelov, A. Yu. (2005). Possible electromagnetic nature of the Saturn’s rings: superconductivity and magnetic levitation. Progress in Electromagnetic Research, PIER, 52, 277-299. Doi.org/10.2528/PIER04082801

[17]    

Tchernyi, V. V., Pospelov, A. Yu. (2007). About hypothesis of the superconducting origin of the Saturn’s rings. Astrophysics and Space Science, 307(4) 347-356. Doi.org/10.1007/s10509-006-9054-7

[18]    

Tchernyi, V. V., Chensky, E. V. (2005). Electromagnetic background for possible magnetic levitation of the superconducting rings of Saturn. Journal of Electromagnetic Waves and Applications, 19, 1997-2006. Doi.org/10.1163/156939305775570440; Tchernyi, V.V., Chensky, E. V. (2005). Movements of the protoplanetary superconducting particles in the magnetic field of Saturn lead to the origin of rings. Geoscience and Remote Sensing Letters-IEEE, 2(4), 445-446. Doi.org/10.1109/LGRS.2005.852767 Corrections, IEEE GRSL, 2006, 3(2). Doi.org/10.1109/LGRS.2006.872347

[19]    

Tchernyi, V. V. (2002 Aug. 7). Possible superconductivity of Saturn rings, University of Hawaii, Institute for Astronomy, Colloquia: Spring/Summer 2002.

[20]    

Tchernyi V. V., Kapranov S. V. (2005). Possible role of superconductivity for simplest life propagation within the interstellar space by electromagnetic force of magnetic levitation. Journal of Electromagnetic Waves and Applications. 19, 15, 1997-2006; Tchernyi V. V., Kapranov S. V. (2005). Astrobiology and Planetary Missions. Hoover R.B. et al. (Eds.). SPIE. 5906.

[21]    

Tchernyi V. V. (2006). About possible role of electromagnetism and superconductivity for the origin of Saturn rings. Prikladnaya Fizika (Applied Physics), 5, 10-16 (Russian).

[22]    

Tchernyi (Cherny), V. V. (2009). Origin of the Saturn rings: electromagnetic model of the sombrero rings formation. Space Exploration Research, J. H. Denis, P. D. Aldridge (Eds.), Nova Science Publishers, NY. Chapter 11, 261-275; also please, see: Tchernyi (Cherny) V.V. (2009). Origin of the Saturn rings: electromagnetic model of the sombrero rings formation. Journal of Magnetohydrodynamics, Plasma and Space Research, 14(3-4), 385-398; (2010) 15(1), 39-52; Tchernyi (Cherny) V. V. (2012). New Developments in Magnetohydrodynamics, Plasma and Space Research. Talton, S., Theba, P.F. (Eds.). EBook. Earth Science in the 21 st century. https://www.novapublishers.com/catalog/product_info.php?products_id=30109

[23]    

Tchernyi, V. V. (2009 Aug. 3-14). To discovery of initial formation (origin) of the sombrero rings of Saturn: role of electromagnetism, Abstract book, Symposium No. 263 - Icy Bodies in the Solar System, Report No. 263-p:56, p. 63. International Astronomical Union, Assembly, XXVII General Assembly, Rio de Janeiro, Brazil. http://www.observatorio.unal.edu.co/investigacion/archivos/AbsBookXXVIIga09.pdf

[24]    

Tchernyi (Cherny), V. V. (2013). Could superconductivity contribute to the Saturn rings origin? Journal of Modern Physics (Special Issue on Superconducting Physics), 4(6A), 17-23. Doi.org/10.4236/jmp.2013.46A005

[25]    

Cherny (Tchernyi), V. V. (2013). The Saturn rings origin: contribution of electromagnetism (to the unified theory of the origin of planetary rings). American Journal Astronomy and Astrophysics, 1(2), 15-22. Doi: 10.11648/j.ajaa.20130102.11

[26]    

Tchernyi, V. (2013). About role of electromagnetism to the Saturn rings origin - to the unified theory of the planetary rings origin. International Journal of Astronomy and Astrophysics, 3, 412-420. Doi/org/10.4236/ijaa.2013.34049

[27]    

Bednorz, J. G., Müller, K. A. (1986). Possible high Tc Superconductivity in the Ba−La−Cu−O System. Zeitschrift für Physik B., 64, 189–193. Doi.org/10.1007/BF01303701

[28]    

Babushkina, G. A., Kobelev, L. Ya., Yakovlev, E. N., Babushkin, A. N. (1986). Superconductivity of Ice Under High Pressure. Physics of Solid State, 28, 3732-3734 (Russian).

[29]    

Côté, M., Grossman, J. C., Cohen, M. L., Louie, S. G. (1998). Electron-phonon interactions in solid C36. Phys. Rev. Lett, 81, 697. Doi.org/10.1103/PhysRevLett.81.697

[30]    

Deutscher, G., Azoulay, M., Almog, B., (2011 Oct. 15-18). Quantum levitation, quantum locking, quantum trapping. AASTC Conf., Maryland, http://www.ted.com/talks/boaz_almog_levitates_a_superconductor.html

[31]    

Maeno, N. (1981). The Science of Ice, Hokkaido University Press, Sapporo.

[32]    

Fu R. R., Weiss B. P., Lima E. A., Harrison R. J., Bai X. N., Desch S. J., Ebel D.S., Suavet C., Wang H., Glenn D., Le Sage D., Kasama T., Walsworth R. L., Kuan A. T. (2014 Nov 28). Paleomagnetism. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science, 346(6213), 1089-1092. Doi: 10.1126/science.258022. (Strong magnetic fields recorded in meteorite provide clues to how early solar system evolved. 2014 Nov 17. Sci-News.com; Magnetic fields frozen into meteorite grains tell a shocking tale of solar system birth. 2014 Nov 13. http://phys.org/news)





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership