






Vol.2 , No. 1, Publication Date: Feb. 2, 2015, Page: 1-6
[1] | Manuel Malaver, Universidad Marítima del Caribe, Departamento de Ciencias Básicas, Catia la Mar, Venezuela. |
In this paper, we studied the behavior of relativistic objects with anisotropic matter distribution considering Tolman IV form for the gravitational potential Z. The equation of state presents a quadratic relation between the energy density and the radial pressure. New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as the presence of an electrical field modifies the energy density, the radial pressure and the mass of the stellar object and generates a singular charge density.
Keywords
Relativistic Objects, Electric Field, Gravitational Potential, Tolman IV Type Potential, Einstein-Maxwell System, Charge Density
Reference
[01] | Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365-367. |
[02] | Bicak, J. (2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173. |
[03] | Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9. |
[04] | Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093. |
[05] | Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class of static charged stars, Gen.Rel. Grav., 33, 999-110. |
[06] | Bowers, R. L., Liang, E. P. T. (1974). Astrophys J., 188, 657 |
[07] | Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J.Math.Phys., 22(1), 118. |
[08] | Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen.Relat.Grav., 26(1), 75-84. |
[09] | Sokolov. A.I. (1980), Sov. Phys.JETP., 52, 575 |
[10] | Usov, V. V. (1974). Phys. Rev. D, 70, 067301 . |
[11] | Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811. |
[12] | Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos paraestrellas de quarks, Revista Integración, 27, 125-133. |
[13] | Malaver, M. (2014). AASCIT Communications, 1, 48-51. |
[14] | Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001. |
[15] | Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J.Plus., 129, 3. |
[16] | Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics, 81(2), 275-286. |
[17] | Sunzu, J.M, Maharaj, S.D and Ray, S.(2014). Astrophysics. Space. Sci. 354, 517- 524 |
[18] | Feroze, T.. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035. |
[19] | Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15. |
[20] | Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969. |
[21] | Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696 |
[22] | Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46. |
[23] | Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state World Applied Programming., 3, 309-313. |
[24] | Thirukkanesh, S., and Ragel, F.C. (2014).Strange star model with Tolmann IV type potential, Astrophysics and Space Science, 352(2), 743-749. |
[25] | Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys, D13, 149-156. |
[26] | Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys. Rev. D27, 328-331. |
[27] | Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373. |
[28] | Feroze, T,. and Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society, 65(6), 944-947. |