ISSN: 2375-3854
International Journal of Ecological Science and Environmental Engineering  
Manuscript Information
 
 
Effects of 1-Octyl-3-Methylimidazolium Bromide on the Growth, Photosynthetic Activity and Antioxidant Enzymes of Chlorella pyrenoidosa
International Journal of Ecological Science and Environmental Engineering
Vol.2 , No. 1, Publication Date: Mar. 3, 2015, Page: 1-10
1617 Views Since March 3, 2015, 941 Downloads Since Apr. 12, 2015
 
 
Authors
 
[1]    

Xiang-Yuan Deng, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, China.

[2]    

Jie Cheng, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.

[3]    

Kun Gao, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.

[4]    

Chang-Hai Wang, Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, China.

 
Abstract
 

In this present study, indoor experiments were performed to analyze and evaluate the effects of 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on the growth, photosynthetic activity and antioxidant enzymes of Chlorella pyrenoidosa using 96 h growth tests in a batch-culture system. Results showed that the growth of C. pyrenoidosa was significantly inhibited by [C8mim]Br, which would destroy the photosynthetic system II (PSII), and hinder the photosynthetic electron transfer of C. pyrenoidosa. By changing the photosynthetic pigments, C. pyrenoidosa attempted to repair the destruction of PSII system and capture more light quanta for photosynthesis. Moreover, remarkable physiological and biochemical responses, especially for the antioxidant enzymes in C. pyrenoidosa, occurred in [C8mim] Br treatments. [C8mim]Br increased total soluble protein content and enhanced antioxidant enzymes activities at low concentrations, but inhibited them at high concentrations. These observations indicated that moderate [C8mim]Br stress would stimulate the synthesis of proteins against stress and quenching of free radicals. And the general increase of MDA contents suggested that the physiological effects of [C8mim]Br were probably exerted through free radical generation. Thus, we suggest that it is necessary to evaluate influences of ionic liquids before their release into the natural environment in order to predict their impacts, avoiding irreparable damages.


Keywords
 

Ionic Liquid, Chlorella pyrenoidosa, 1-Octyl-3-Methylimidazolium Bromide ([C8mim]Br), Photosynthetic Activity, Antioxidant Enzymes


Reference
 
[01]    

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399

[02]    

Bailey MM, Jernigan PL, Henson MB, Sturdivant J, Rasco JF, Lovich AN, Lockhard JE, Hough WL, Di Bona KR, Beaird J, Sherrill J, Swatloski RP, Rogers RD, Hood RD (2010) A comparison of the effects of prenatal exposure of CD-1 mice to three imidazolium-based ionic liquids. Birth Defects Res B Dev Reprod Toxicol 89:233-238

[03]    

Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24:87-92

[04]    

Bhunia AK, Basu NK, Roy D, Chakrabarti A, Banerjee SK (1991) Growth, chlorophyll a content, nitrogen-fixing ability, and certain metabolic activities of Nostoc muscorum: effect of methylparathion and benthiocarb. Bull Environ Contam Toxicol 47:43-50

[05]    

Biswas A, Shogren RL, Stevenson DG, Willett JL, Bhowmik PK (2006) Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein. Carbohyd Polym 66:546-550

[06]    

Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179-194

[07]    

Bruzzone S, Chiappe C, Focardi SE, Pretti C, Renzi M (2011) Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure-toxicity relationships. Chem Eng J 175:17-23

[08]    

Campanella L, Cubadda F, Sammartino MP, Saoncella A (2001) An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res 35:69-76

[09]    

Chinese NEPA (1990) Algal growth inhibiting test. In: Guidelines for testing of chemicals (Chinese). Chinese Chemical Industry Press, Beijing, pp168-178.

[10]    

Cho CW, Jeon YC, Pham TPT, Vijayaraghavan K, Yun YS (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166-171

[11]    

Cho CW, Pham TP, Jeon YC, Vijayaraghavan K, Choe WS, Yun YS (2007) Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69:1003-1007

[12]    

Choudhary M, Jetley UK, Abash Khan M, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204-209

[13]    

Costello DM, Brown LM, Lamberti GA (2009) Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem 11:548-553

[14]    

Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem 8:82-90

[15]    

Docherty KM, Kulpa JCF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185-189

[16]    

Earle M, Wasserscheid P, Schulz P, Olivier-Bourbigou H, Favre F, Vaultier M, Kirschning A, Singh V, Riisager A, Fehrmann R, Kuhlmann S (2008) Organic synthesis. In: Wasserscheid P, Welton T (eds), Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 265-568.

[17]    

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909-930

[18]    

Hao J, Kang Z, Yu Y (2007) Experimental techniques of plant physiology. Chemical Industry Press, Beijing, pp 156-168

[19]    

Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91:262-269

[20]    

Källqvist T, Svenson A (2003) Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta. Water Res 37:477-484

[21]    

Kalaji MH, Guo PG (2008) Chlorophyll fluorescence: A useful tool in barley plant breeding programs. In: Sanchez A, Gutierrez SJ (eds), Photochemistry Research Progress. Nova Science Publishers, New York, pp 439-463.

[22]    

Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105-115

[23]    

Kumar S, Habib K, Fatma T (2008) Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria. Sci Total Environ 403:130-138

[24]    

Latała A, Nędzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem 11:1371-1376

[25]    

Latała A, Nędzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60-64

[26]    

Latała A, Stepnowski P, Nędzi M, Mrozik W (2005) Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquat Toxicol 73:91-98

[27]    

Leitao MA, Cardozo KH, Pinto E, Colepicolo P (2003) PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum. Arch Environ Contam Toxicol 45:59-65

[28]    

Li XY, Zeng SH, Dong XY, Ma JG, Wang JJ (2012) Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish. Ecotoxicology 21:253-259

[29]    

Luo YR, Li XY, Chen XX, Zhang BJ, Sun ZJ, Wang JJ (2008) The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna. Environ Toxicol 23:736-744

[30]    

Ma JM, Cai LL, Zhang BJ, Hu LW, Li XY, Wang JJ (2010) Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol Environ Saf 73:1465-1469

[31]    

Maes M, Mihaylova I, Leunis JC (2006) Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol Lett 27:615-621

[32]    

Moniruzzaman M, Kamiya N, Goto M (2010a) Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem 8:2887-2899

[33]    

Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010b) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295-314

[34]    

Muginova SV, Galimova AZ, Polyakov AE, Shekhovtsova TN (2010) Ionic liquids in enzymatic catalysis and biochemical methods of analysis: capabilities and prospects. J Anal Chem 65:331-351

[35]    

Patel DD, Lee JM (2012) Applications of ionic liquids. Chem Rec 12:329-355

[36]    

Pernak J, Goc I, Mirska I (2004) Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem 6:323-329

[37]    

Pinto PCAG, Saraiva MLMFS, Lima JLFC (2008) Sequential injection analysis as a tool for implementation of enzymatic assays in ionic liquids. Talanta 77:479-483

[38]    

Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72:1170-1176

[39]    

Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238-240

[40]    

Rajendran UM, Kathirvel E, Narayanaswamy A (2007) Effects of a fungicide, an insecticide, and a biopesticide on Tolypothrix scytonemoides. Pestic Biochem Phys 87:164-171

[41]    

Rao CJ, Venkatesan KA, Nagarajan K, Srinivasan TG, Rao PRV (2007) Treatment of tissue paper containing radioactive waste and electrochemical recovery of valuables using ionic liquids. Electrochim Acta 53:1911-1919

[42]    

Real M, Munoz I, Guasch H, Navarro E, Sabater S (2003) The effect of copper exposure on a simple aquatic food chain. Aquat Toxicol 63:283-291

[43]    

Sabater C, Carrasco JM (2001) Effects of pyridaphenthion on growth of five freshwater species of phytoplankton. A laboratory study. Chemosphere 44:1775-1781

[44]    

Sabatini SE, Juarez AB, Eppis MR, Bianchi L, Luquet CM, Rios de Molina Mdel C (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72:1200-1206

[45]    

Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: Mechanisms and Effects. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 4253-4258.

[46]    

Shiddiky MJA, Torriero AAJ (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775-1787

[47]    

Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171-205

[48]    

Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1-16

[49]    

Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361-363

[50]    

Ventura SP, Goncalves AMM, Goncalves F, Coutinho JA (2010) Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquat Toxicol 96:290-297

[51]    

Ventura SP, de Barros RLF, Sintra T, Soares CMF, Lima AS, Coutinho JAP (2012) Simple screening method to identify toxic/non-toxic ionic liquids: agar diffusion test adaptation. Ecotoxicol Environ Saf 83:55-62

[52]    

Verdisson S, Couderchet M, Vernet G (2001) Effects of procymidone, fludioxonil and pyrimethanil on two non-target aquatic plants. Chemosphere 44:467-474

[53]    

Wong PK (2000) Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41:177-182

[54]    

Yan GA, Yan X, Wu W (1997) Effects of the herbicide molinate on mixotrophic growth, photosynthetic pigments, and protein content of Anabaena sphaerica under different light conditions. Ecotoxicol Environ Saf 38:144-149

[55]    

Yu M, Li SM, Li XY, Zhang BJ, Wang JJ (2008) Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicol Environ Saf 71:903-908

[56]    

Yu M, Wang SH, Luo YR, Han YW, Li XY, Zhang BJ, Wang JJ (2009) Effects of the 1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna. Ecotoxicol Environ Saf 72:1798-1804

[57]    

Zhang BJ, Li XY, Chen DD, Wang JJ (2012) Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor. Protoplasma 250(1):103-110

[58]    

Zhang QH, Zhang SG, Deng YQ (2011) Recent advances in ionic liquid catalysis. Green Chem 13:2619-2637

[59]    

Zhao DB, Liao YC, Zhang ZD (2007) Toxicity of ionic liquids. CLEAN – Soil, Air, Water 35:42-48





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership