ISSN Print: 2381-1099  ISSN Online: 2381-1102
International Journal of Geophysics and Geochemistry  
Manuscript Information
 
 
Gravity and Magnetic Modeling Sergipano Belt, Brazil: Tectonic Control and Crustal Thickness of the Basement Adjacent to the Sergipe-Alagoas Basin
International Journal of Geophysics and Geochemistry
Vol.5 , No. 2, Publication Date: Jul. 8, 2019, Page: 58-71
1617 Views Since July 8, 2019, 771 Downloads Since Jul. 8, 2019
 
 
Authors
 
[1]    

Alanna Costa Dutra, Department of Earth Physics and Environment, Physics Institute, Federal University of Bahia, Salvador, Brazil.

[2]    

Alexandre Barreto Costa, Department of Earth Physics and Environment, Physics Institute, Federal University of Bahia, Salvador, Brazil.

[3]    

Roberto Max de Argollo, Department of Earth Physics and Environment, Physics Institute, Federal University of Bahia, Salvador, Brazil.

 
Abstract
 

This work used gravimetric and magnetic data to investigate the Sergipano Belt that occupies the Southern Borborema Province, Brazil. The main objective was to interpret tectonic relationships between the geological domains, crustal lateral variation of the physical properties and the behavior of the Moho relief. The gravity and magnetic inversion was performed to determine the physical properties magnetic susceptibility and density contrast to delineate the geometry of the true source. The regional gravity anomaly was used to obtain solutions depth of the interface crust-mantle in which it was necessary to know the initial model of the crustal thickness and density contrast. The geophysical measures was used to delineate the initially crustal thickness and compared to the results based on a compilation of data published in the literature mainly derived from seismic database such as deep seismic refraction experiments. These magnetic sources have signals with different amplitudes that originate from different geometric sources, situated at different depths and with different magnetic properties. As to the crustal thickness results, we found that the southern region of the Sergipano Belt has a crustal (34-35 km) and mantle uplift, mainly in the Girau do Ponciano Dome. The Rio Coruripe domain as well as the PEAL Terrain has a thicker crust (38-40 km), with magnetic and gravimetric sources that reach from 15 to 20 km deep marked in sections.


Keywords
 

Gravity and Magnetic Modeling, Edge Detection, Tectonic Control, Sedimentary Basin


Reference
 
[01]    

Almeida de, F. F. M., Hasui, Y., Brito de, Neves B. B., Fuck, R. A., 1981. Brazilian Structural Provinces: an introduction. Earth Sciences Review 17, 1±29 Special Issue.

[02]    

Argollo, R. M. ; Marinho, M. M. ; COSTA, A. B. ; Sampaio Filho, H. A. ; Santos, E. J. ; Coutinho, L. F. C., 2012. Modelo crustal e fluxo de calor nos domínios Estância, Canudos, Vaza-Barris e Macururé adjacente às bordas emersas da Bacia Sergipe-Alagoas.. BOLETIM DE GEOCIÊNCIAS DA PETROBRAS (IMPRESSO), v. 20, p. 283-304.

[03]    

Assumpção, M., Bianchi, M., Julià, J., Dias, F. L. França, G. S., Nascimento, R., Drouet, S., Pavão, C. G., Albuquerque, D. F., Afonso, E. V. L., 2013. Crustal thickness map of Brazil: Data compilation and main features, Journal of South American Earth Sciences, Volume 43, Pages 74-85. https://doi.org/10.1016/j.jsames.2012.12.009.

[04]    

Bhaskara, Rao, D. 1986. Modelling of sedimentary basins from gravity anomalies with variable density contrast. Geophys. J. Roy. Astr. Soc., 84: 207-121.

[05]    

Blakely, R. J., and Simpson, R. W., 1986, Approximating edges of bodies from magnetic or gravity anomalies, Geophysics, v. 51, p. 1494-1498.

[06]    

Brito Neves, B. B., Van Schmus, W. R., Santos, E. J., Campos Neto, M. C., Kozuch, M., 1995. O evento Cariris Velhos na Província Borborema: integração de dados, implicações e perspectivas. Rev. Bras. Geociênc. 25, 279e296.

[07]    

Chai, Y. & Hinze, W. J. 1988. Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 53: 837-845.

[08]    

Constable, C. S., Parker, R. L., and Constable, C. G., 1987, Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, 289–300.

[09]    

Cooper, G. R. J. and Cowan, D. R., 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32, 1585–1591.

[10]    

Cooper, G. R. J. and Cowan, D. R., 2008. Edge enhancement of potential-field data using normalized statistics. Geophysics, 73 (3), H1–H4.

[11]    

Cooper, G. R. J. and Cowan, D. R., 2009. Terracing potential field data. Geophysical Prospecting, 57, 1067– 1071.

[12]    

Cordell, L. 1973. Gity analysis using an exponential density–depth function - San Jacinto Graben California. Geophysics, 38: 684-690.

[13]    

CPRM, 2008. Projeto Aerogeofísico Borda Leste do Planalto da Borborema, CPRM (Programa Geologia do Brasil).

[14]    

Delgado I. M., Souza J. D., Silva L. C, Silveira Filho N. C., Santos R. G., Pedreira A. J., Guimarães J. T., Angelim L. A. A., Vasconcelos A. M., Gomes I. P,, Lacerda Filho J. V., Valente C. R., Perrotta M. M. & Heineck C. A., 2003. Geotectônica do Escudo Atlântico. In: BIZZI LA, SCHOBBENHAUS C, VIDOTTI RM & GONÇALVES JH (Eds.). Geologia, tectônica e recursos minerais do Brasil: texto, mapas & SIG. CPRM, p. 227-334.

[15]    

Davison, I.; Santos, R. A., 1989. Tectonic evolution of the Sergipano Fold Belt, NE Brazil, during the brasiliano orogeny. Precambrian Research, v. 45, p. 319-342

[16]    

D’el Rey Silva, L. J. H., 1995. The evolution of basement gneiss domes of the Sergipano fold belt (NE Brazil) and its importance for the analysis of Proterozoic basins. Journal of South American Earth Sciences, v. 8, n. 3/4, p. 325-340.

[17]    

D’el-Rey Silva, L. J. H., 1999. Basin infilling in the southern-central part of the Sergi- pano Belt (NEBrazil) and implications for the evolution of Pan-African/Brasiliano cratons and Neoproterozoic cover. Journal of South American Earth Sciences 12, 453–470.

[18]    

D’el-Rey Silva, L. J. H., McClay, K. R., 1995. Stratigraphy of the southern part of the Sergipano Belt, NEBrazil: tectonic implications. Revista Brasileira de Geociências 25, 185–202.

[19]    

Dominguez, J. M. L., 1993. As coberturas do Cráton São Francisco: uma abordagem do ponto de vista da análise de bacias. In.: Dominguez J. M. L., Misi A. (Eds.), O Cráton São Francisco, SBG. BA-SE, pp. 137–159.

[20]    

Eshaghzadeh, A., 2014. Anomaly Edge Enhancement of Microgravity Data Using Normalized Standard Deviation. Geodynamics Research International Bulletin, 2, XLVIIILII.

[21]    

Ferreira, F. J. F., L. G. de Castro, A. B. S. Bongiolo, J. de Souza, and M. A. T. Romeiro, 2011. Enhancement of the total horizontal gradient of magnetic anomalies using tilt derivatives: Part II—Application to real data: 81st Annual International Meeting, SEG, Expanded Abstracts, 887–891.

[22]    

Ferreira, F. J. F., de Souza, J., Bongiolo, A. B. S., Castro, L. G., 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78, J33–J41.

[23]    

Gomez-Ortiz, D., Agarwal, B. N. P., 2005. 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg’s algorithm. Computers & Geosciences vol. 31, p. 13–520.

[24]    

Hood, P. J. and Teskey, D. J., 1989. Aeromagnetic gradiometer program of the Geological Survey of Canada. Geophysics, 54 (8), 1012–1022.

[25]    

Ma, G. and Li, L., 2012. Edge detection in potential fields with the normalized total horizontal derivative. Computers and Geosciences, 41 (2012) 83–87.

[26]    

Miller, H. G. and Singh, V., 1994. Potential field tilt - a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217. Miller, H. G. and Singh, V. (1994) Potential field tilt - a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

[27]    

Nabighian, M. N., 1972. The analytical signal of 2D magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

[28]    

Neves, S. P., Bruguier, O., Silva, J. M. R., Mariano, G., 2015. From extension to shortening: dating the onset of the Brasiliano Orogeny in eastern Borborema Province (NE Brazil). J. S. Am. Earth Sci. 58, 238 e 256.

[29]    

Oldenburg, D. W., 1974. The inversion and interpretation of gravity anomalies. Geophysics 39 (4), 526–536.

[30]    

Oliveira, E. P., Toteu, S. F., Araújo, M. N. C., Carvalho, M. J., Nascimento, R. S., Bueno, J. F., McNaughton, N., Basilici, G., 2006. Geologic correlation between the Neoprotero- zoic Sergipano belt (NE Brazil) and the Yaoundé schist belt (Cameroon, Africa). Journal of African Earth Sciences 44, 470–478.

[31]    

Oliveira, E. P., Windley, B. F., Araújo, D. B., 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Res. 181, 64 - 84.

[32]    

Parker, R. L., 1973. The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society 31, 447–455.

[33]    

Pavão, C. G., França, G. S. Bianchi, M., Almeida, T., Huelsen, M. G. V.., 2013. Upper-lower crust thickness of the Borborema Province, NE Brazil, using Receiver Function. Journal of South American Earth Sciences. Volume 42, March 2013, Pages 242-249. https://doi.org/10.1016/j.jsames.2012.07.003.

[34]    

Santos dos, E. J., Brito de, Neves B. B., 1984. Província Borborema. In: Almeida, F. F. M., Hasui, Y. (Eds.), O pre- cambriano do Brasil. Editora Edgard Blucher, São Paulo, pp. 123-186.

[35]    

Sari, Cokun & Salk, Müjgan. 2002. Analysis of gravity anomalies with hyperbolic density contrast: An application to the gravity data of Western Anatolia. Journal of the Balk an Geophysical Society, 5 (3): 87-96.

[36]    

Silva Filho, A. F.; Guimaraes, I. P.; Brito, M. F. L.; Pimentel, M. M., 1997. Geochemical signatures of main Neoproterozoic Late-Tectonic granitoids from the Sergipano Fold Belt, Brazil: Significance For The Brasiliano Orogeny. International Geology Review, Estados Unidos, v. 39, n. 07, p. 639-659.

[37]    

Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip and susceptibility contrast using the SPITM method, Geophysics, v. 62, p. 807-813.

[38]    

Verduzco, B., Fairhead, J. D., Green, C. M. (2004) New insights into magnetic derivatives for structural mapping. The Leading Edge, 23 (2), 116–119.

[39]    

Wijns, C., Perez, C., Kowalczyk and P. (2005) Theta map: edge detection in magnetic data. Geophysics, 70 (4), 39– 43.

[40]    

ZONDGM2D, 2013. Zond Geophysical Software: Program for 2D interpretation of magnetic and gravity data, Saint-Petersburg: http://zond-geo.com/english/zond-software/gravity-magnetic-self-potential/zondgm2d, 2001-2018.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership