ISSN Print: 2381-1099  ISSN Online: 2381-1102
International Journal of Geophysics and Geochemistry  
Manuscript Information
 
 
An Improved Method for Crustal Temperatures: Implications for a Global Framework of Geotherms
International Journal of Geophysics and Geochemistry
Vol.3 , No. 6, Publication Date: Oct. 29, 2016, Page: 61-72
3283 Views Since October 29, 2016, 2216 Downloads Since Oct. 29, 2016
 
 
Authors
 
[1]    

Alexandrino C. H., Federal University of the Jequitinhonha and Mucuri Valleys, Teófilo Otoni (MG), Brazil.

[2]    

Hamza V. M., National Observatory, Rio de Janeiro (RJ), Brazil.

 
Abstract
 

An improved method for calculating crustal geotherms in stable continental crust is proposed, based on integrated use of data acquired in crustal seismic and heat flow studies. Designated as seismo-thermal method (STM), it is based on analytical solution to the standard heat conduction problem in stratified media, coupled with empirical relations between seismic velocities and temperatures at the crust-mantle interphase. Iterative trial and error methods are employed in establishing successful coupling. This technique allows estimation of crustal temperatures and mantle heat flow with lesser uncertainty than has so far been possible. The results obtained are relatively free of errors arising from the petrological complexities of the upper crust and are in broad agreement with crustal temperatures derived by conventional methods. Examples of the use of this method has been illustrated by calculating basal temperatures and crustal geotherms for four distinct segments of the Tocantins Structural Province in Brazil, namely the Araguaia Belt, Goiás Massif, Fold and Thrust Zones and Regions of sedimentary cover adjacent to the Sao Francisco Craton. The basal temperatures at the crust-mantle interphase in this province are found to fall in the interval of 760 to 1034°C, while the overall crustal thermal gradients are in the range of 16 to 20°C/km. Calculations of mantle heat flow, as per STM, indicate values in the range of 37 to 51mW/m2. The results reveal that deep crustal heat flow is relatively high in the Araguaia Belt and Goiás Massif, when compared with that in regions of Thrust and Fold Belts and sediment cover over São Francisco craton. Such second order changes in deep-level heat flow have not so far been detected in earlier studies based on conventional geothermal mapping. Use of the newly proposed method (STM) also opens up the possibility of setting up a global reference framework of deep geotherms in different tectonic settings, based on results of crustal seismic surveys.


Keywords
 

Crustal Geotherms, Seismo-thermal Method, Tocantins Structural Province, Seismic Velocities, Mantle Heat Flow, Global Framework for Geotherms


Reference
 
[01]    

Blackwell, D. D., 1971. The thermal structure of the continental crust: In: Heacock, J. G., (Ed.), The structure and physical properties of the Earth's crust: American Geophysical Union Monograph, 14: 169-184.

[02]    

Hamza, V. M., 1982. Thermal structure of the South American continental lithosphere during Archean and Proterozoic. Revista Brasileira de Geociencias 12: 149-159.

[03]    

Alexandrino, C. H., 2008. Thermal field of the structural province of São Francisco and adjacent mobile belts (in Portuguese), Unpublished Ph.D. Thesis, National Observatory (ON - MCTI), Rio de Janeiro, 183 pages.

[04]    

Kern, H., Richter, A. 1981. Temperature derivatives of compressional and shear wave velocities in crustal and mantle rocks at 6 kbar confining pressure. J. Geophys., 49: 47–56.

[05]    

Goes, S., R., Govers, Vacher, P., 2000. Shallow mantle temperatures under Europe from P and S wave tomography. J. Geophys. Res., 105: 11,153–11,169.

[06]    

Shapiro, N. M., Ritzwoller, M. H., 2004. Thermodynamic constraints on seismic inversions. Geophys, J. Int., 157: 1175–1188.

[07]    

Kuskov, O. L., Kronrod, V. A., 2007. Modelling of the thermal structure of continental lithosphere. Izvestiya, Physics of the Solid Earth, 43: 91–101.

[08]    

Perry, H. K. C., Jaupart, C., Mareschal, J.-C., Shapiro N. M., 2006. Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow. J. Geophys. Res., 111: B07301, doi:10.1029/2005JB003921.

[09]    

Vedanti, N., Pandey, O. P., Srivastava, R. P., Mandal, P., Kumar, S., and Dimri, V. P., 2011. Predicting heat flow in the 2001 Bhuj earthquake (Mw=7.7) region of Kutch (Western India), using an inverse recurrence method. Nonlinear Processes in Geophysics, 18: 611-625, doi:10.5194/npg-18-611-625.

[10]    

Cermák, V., 1982. Crustal temperature and mantle heat flow in Europe. In: M. L. Gupta (Editor). Terrestrial Heat Flow. Tectonophysics, 83: 123-142.

[11]    

Kern H, Schenk V (1988) A model of velocity structure beneath Calabria, southern Italy, based on laboratory data. Earth and Planetary Science Letters, 87: 325–337.

[12]    

Verdoya, M., Pasquale, V., Chiozzi, P., Kukkonen, I. T., 1998. Radiogenic heat production in the Variscan crust: new determinations and distribution models in Corsica (northwestern Mediterranean). Tectonophysics, 291: 63-75.

[13]    

Carslaw, H. S., Jaeger, J. C., 1959. Conduction of Heat in Solids, 2nd ed. Oxford: Oxford University Press.

[14]    

Özisik, M. N., 1980. Heat Conduction, John Wiley, New York.

[15]    

Artemieva, I. M., Mooney W. D., 2001. Thermal structure and evolution of Precambrian lithosphere: A global study. J. Geophys. Res., 106: 16387-16414.

[16]    

Spichak, V., Zakharova, O., Rybin, A., 2007a. On the possibility of realization of contact-free electromagnetic geothermometer, Doklady Russian Academy of Sci. 417A (9): 1370-1374.

[17]    

Spichak, V., Zakharova, O., Rybin, A., 2007b. Estimation of the sub-surface temperature by means of magnetotelluric sounding. Expanded Abstract. XXXII Workshop on Geothermal Reservoir Engineering, Stanford University, USA.

[18]    

Pasquale, V., Cabella, C., Verdoya, M., 1990. Deep temperatures and lithospheric thickness along the European Geotraverse. Tectonophysics, 176: 1-11.

[19]    

Cermák, V., Bodri, L., Rybach, L., 1991. Radioactive heat production in the continental crust and its depth dependence. In: Cermák, V., Rybach, L. (Eds.), Terrestrial Heat-Flow and Lithosphere Structure. Springer, Berlin, pp. 23-69.

[20]    

Christensen, N. I., and Mooney, W. D., 1995. Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 100: 9761-9788.

[21]    

Zhai, M. –G, Guo, J. H. and Liu, W. –J., 2001, An exposed cross-section of early Precambrian continental lower crust in North China Craton., Physics and Chemistry of the Earth, 26: 9-10, 781-792.

[22]    

Caggianelli, A., Prosser, G., Festa, V., Langone, A., Spiess, R., 2013, From the upper to the lower continental crust exposed in Calabria., 86° Congresso Nazionale della Società Geologica Italiana-Arcavacata di Rende (CS), vol. 5 (1-2), 49p., DOI: 10.3301/GFT.2013.02

[23]    

Rudnick, R. L., Fountain, D., M., 1995. Nature and composition of the continental crust - a lower crustal perspective, Reviews in Geophysics 33: 267-309.

[24]    

Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., Fuck, R. A., 1981. Brazilian structural provinces: an introduction, Earth Sciences Review, 17: 1-29.

[25]    

Fuck, R., A., 1994. The Brasilia Belt and tectonic partition in the Tocantins Province (in Portuguese). Proceedings of the Symposium in Brasilia on Geology of West-Central region, 4: 184-187.

[26]    

Pimentel, M. M., Fuck, R, A., Jost, H., Ferreira Filho, C. F., Araújo, S., M., 2000. The basement of the Brasília Fold Belt and the Goiás Magmatic Arc, In: Cordani, U. G., Milani, E., J., Thomaz Filho, A. and Campos, D. A. (Eds,). Tectonic Evolution of South America, Proceedings of the 31st International Geological Congress – IGC, 190-229.

[27]    

Fuck, R. A. D., Pimentel, E. L., Botelho, M. M., Armstrong, N. F., Laux, R., Junges, H. J., Soares, S. L., Praxedes, I. F., 2014. Paleoproterozoic crust-formation and reworking events in the Tocantins Province, central Brazil: A contribution for Atlantic supercontinent reconstruction. Precambrian Research, 244: 53-74.

[28]    

Berrocal‚ J., Marangoni‚ Y., de Sá‚ N. C., Fuck‚ R., Soares‚ J.E.P., Dantas‚ E., Perosi‚ F., Fernandes‚ C., 2004. Deep seismic refraction and gravity crustal model and tectonic deformation in Tocantins Province‚ Central Brazil. Tectonophysics, 388: 187-199.

[29]    

Perosi, F., A., 2006. Crustal structure of the central sector of Tocantins Province, using P, S waves and reflected phases, with data of deep seismic reflection (in Portuguese). Unpublished Ph. D. Thesis, University of São Paulo, 138 pages.

[30]    

Soares, J. E., Berrocal, J., Fuck, R. A., Mooney, W. D., Ventura, D. B. R., 2006. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study. J. Geophys. Res., 111: B12302, doi:10.1029/2005JB003769.

[31]    

Kukkonen I. T. and Jõeleht A., 1995. Geothermal modeling of the lithosphere in the central Baltic Shield and its southern slope; Tectonophysics, 255: 25-45.

[32]    

Seipold, U., 2001. Der Warmetransport in kristallinen Gesteinen unter den Bedingungen der kontinentalen Kruste (in German), Tech. Rep. STR01/13, GFZ, Potsdam, Germany.

[33]    

Vosteen, H. D., Schellschmidt, R., 2003. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock Physics and Chemistry of the Earth, 28: 499–509.

[34]    

Zoth, G., Hanel, R., 1988. Appendix. In: Haenel, R., Rybach, L., Stegena, L. (Eds.), Handbook of Terrestrial Heat Flow Density Determination. Kluwer Academic Publishers, Dordrecht.

[35]    

Schatz, J. F., G. Simmons, G., 1972. Thermal conductivity of Earth materials at high temperatures, J. Geophys. Res., 77, 6966–6983.

[36]    

Rybach, L., Buntebarth, G., 1984. The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere, Tectonophysics, 103: 335-344.

[37]    

Kern, H and Siegesmund, S., 1989. A test of the relationship between seismic velocity and heat production for crustal rocks, Earth and Planetary Science Letters, 92: 89-94.

[38]    

Cermák, V., Bodri, L., Rybach, L. and Buntebarth, G., 1990. Relationship between seismic velocity and heat production, Earth and Planetary Science Letters, 99: 48-57.

[39]    

Alexandrino, C. H. and Hamza, V. M., 2008. Estimates of heat flow and heat production and a thermal model of the São Francisco craton, Int. J. Earth Sci (Geol Rundsch), DOI: 10.1007/s00531-007-0291-y.

[40]    

Hamza, V. M., Eston, S. M. and Araújo, R. L. C., 1978. Geothermal energy prospects in Brazil: A preliminary analysis. Pure Appl. Geophysics, 117: 180-195.

[41]    

Vieira, F. P. and Hamza, V. M., 2014. Advances in Assessment of Geothermal Resources of South America. Natural Resources, 5: 897-913.

[42]    

Petitjean, S., Rabinowicz, M., Gregoire, M., Chevrot, S., 2006. Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity. Geochemistry Geophysics Geosystems, 7, 3: 1-26, Q03021, doi:10.1029/2005GC001053.

[43]    

Cooper, C. M., Lenardic, A., Moresi, L., 2004. The thermal structure of stable continental lithosphere within a dynamic mantle. Earth Planetary Science Letters, 222, 807–817.

[44]    

Gung, Y., Panning, M. Romanowicz, B., 2003. Global anisotropy and the thickness of continents, Nature, 422: 707–710.

[45]    

Cermák, V., 1995. Geothermal model of the Central segment of the EGT (Extended abstract). Tectonophysics, 244: 51-55.

[46]    

USGS., 2016. Global Crustal Data Base, United States Geological Survey, Page URL: http://earthquake.usgs.gov/data/crust/database.php.

[47]    

Ben, M. D., Kelemen, P. B., 2003. Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochemistry Geophysics Geosystems, 7, 5: 1-57, 1041, doi:10.1029/2002GC000393.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership