






Vol.3 , No. 4, Publication Date: Aug. 18, 2016, Page: 33-48
[1] | Hany H. El Hadek, Geology Department, Faculty of Science, Assiut University, Assiut, Egypt. |
[2] | Mohamed A. Mohamed, Geology Department, Faculty of Science, Assiut University, Assiut, Egypt. |
[3] | Galal H. El Habaak, Geology Department, Faculty of Science, Assiut University, Assiut, Egypt. |
[4] | Wagih W. Bishara, Geology Department, Faculty of Science, Assiut University, Assiut, Egypt. |
[5] | Kamal A. Ali, Department of Mineral Resources and Rocks, Faculty of Earth Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. |
The Homrit Waggat granite is a composite granite pluton intruded in metamorphosed volcano-sedimentary association and the metagabbro-diorite complex to the east and north and tonalite-granodiorite suite to the south and northeast. Mineralogically and geochemically the granite phases change from subsolvus peraluminous granodiorite to hypersolvus metaluminous and highly evolved alkali feldspar granite, passing through biotite and mylonitized biotite granites. Late to post-magmatic processes are represented by marginal stockscheider amazonite pegmatite, marginal amazonite albite as well as greisen zone up to 30 m2. Increasing of SiO2, alkalis, Rb, F, Nb, Ta, Sn, Ga, HREEs and Y, and decreasing of Fe, Al, Mg, Ca, Mn, Ti, Sr, Ba, Zr, and LREEs from the biotite granodiorite to hypersolvus alkali feldspar granite reflects magmatic fractionation processes of Homrit Waggat granite phases. LREEs fractionation patterns as well as Eu anomalies decrease from granodiorite to the alkali feldspar granite and the latter displays flat patterns. In the hypersolvus alkali feldspar granite, Ga/Al ratio is typically of A-type granite, but not their Zr, Y, or Ce enrichments. In addition, the hypersolvus granite is characterized by low-P2O5 and the LREEs>>HREEs depletion which reflects the initial undersaturation of accessory mineral assemblage that resulted from high concentration of volatiles and/or alkali complexes. The behaviour of REEs and Zr in the mentioned phases is consistent with F- content as well as accessory minerals in the studied granites. Trace elements pattern in the spider diagram show significant depletion in Sr, Ba, P and Ti, and enrichment in Rb, Th and U. The Sr, Ba, P and Ti depletion could be related to fractionation of plagioclase, apatite and ilmenite. Zircon saturation temperature (Tzr) calculated from bulk rock composition for Homrit Waggat granites range between 809°C and 765°C. These values are consistent with low temperature granite which crystallized from a source melt saturated with zirconium concentrations via partial melting of I- type granite magma may be granodioritic in composition. The highly evolved alkali feldspar granite was formed from the initial granodioritic I-type melt via fractional crystallization. F-rich melt and F-complexing played an important role in the evolution and chemical characterization of the highly evolved hypersolvus alkali feldspar granite. Four stages of mineralization were detected in the Homrit Waggat granite. These stages are magmatic, pegmatitic, metasomatic and veins. Columbite, cassiterite, fluorite as well as undifferentiated rare earth minerals are detected.
Keywords
A-type Granite, Rare-Metals, Zircon Saturation, Mineralization, Fractionation, Melt
Reference
[01] | Abdel Rahman, A. M., Martin, R. F., 1990. The Mount Gharib A-type granite Nubian Shield: role of metasomatism at the source. Contrib. Mineral. Petrol. 104, 173–183. |
[02] | Ahmadipour, H., Rostamizadeh, G., 2012. Geochemical aspects of Na-metasomatism in Sargaz granitic intrusion (South of Kerman Province, Iran). J. Sci., Islamic Republic of Iran, 23 (1), 45-58. |
[03] | Akaad, M. K., Noweir, A. M., 1980. Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between latitudes 25º 35ʹ and 26º 30ʹ N. Inst. Appl. Geol. Jeddah Bull. 3, 127–135. |
[04] | Anders, E., Grevesse, N., 1989. The abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197-214. |
[05] | Baker, B. H., McBirney, A. R., 1985. Liquid fractionation. Part III: Geochemistry of zoned magmas and the compositional effects of liquid fractionation. J. Volcano. Geotherm. Res. 24, 55-81. |
[06] | Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R., Vigneresse, J-L., 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 44 (3), 231-234. |
[07] | Bentor, Y. K., 1985. The crustal evolution of the Arabo-Nubian massif with special reference to the Sinai Peninsula. Precam. Res. 28 (1), 1–74. |
[08] | Bhalla, P., Holtz, F., Linnen, R. L., Behrens, H., 2005. Solubility of cassiterite in evolved granitic melts: effect of T, f O2, and additional volatiles. Lithos 80, 387–400. |
[09] | Biste, M., 1982. Geochemistry of South Sardinian granites compared with their tin potential. In: Evans, A. M. (ed.), Metallizaion associated with acid magmatism. John Wiley and Sons Ltd., Chichester, England, 37-49. |
[10] | Bonin, B., 1996. A-type granite ring complexes: mantle origin through crustal filters and the anorthosite–rapakivi magmatism connection. In: Demaiffe, D. (ed.) Petrology and Geochemistry of Magmatic Suites of Rocks in the Continental and Oceanic Crusts. ULB-MRAC, Bruxelles 201-217. |
[11] | Bonin, B., Grelou-Orsini, C., Vialette, Y., 1978. Age, Origin and Evolution of the Anorogenic Complex of Evisa (Corsica): A K- Li - Rb- Sr Study. Contrib. Mineral. Petrol. 65, 425-432. |
[12] | Bowden, P., Kinnaird, J. A., 1984. The petrology and geochemistry of alkaline granites from Nigeria. Phys. Earth Planet. Int. 87, 199-211. |
[13] | Chappell, B., 2010. High- and low-temperature granites. The Ishihara Symposium: Granites and Associated Metallogenesis. 35-36. |
[14] | Christiansen, E. H., Stuckless, J. S., Funkhouser-Marolf, M. J., Howell, K. H., 1988. Petrogenesis of rare-metal granites from depleted crustal sources: an example from the Cenozoic of western Utah, U.S.A. In: Taylor, R. P. and Strong, D. F. (eds) Recent advances in the geology of granite-related mineral deposits. Can. Inst. Min. Metall. 39, 307-321. |
[15] | Clarke, D. B., 1992. The mineralogy of peraluminous granites: a review. Can. Mineral. 19, 3-17. |
[16] | Collerson, K. D., 1982. Geochemistry and Rb-Sr geochronology of associated Proterozoic peralkaline and subalkaline anorogenic granites from Labrador. Contrib. Mineral. Petrol. 81, 126-147. |
[17] | Collins, W. J., Beams, S. D., White, A. J. R., Chappell, B. W., 1982. Nature and origin of A-type granites with particular reference to south eastern Australia. Contrib. Mineral. Petrol. 80, 189–200. |
[18] | De La Roche, H., Leterrier, J., Grand Claude, P., Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analyses – its relationships and current nomenclature. Chem. Geol. 29, 183–210. |
[19] | Eby, G. N., 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115-134. |
[20] | Eby, G. N., 1992. Chemical subdivision of the A-type granitoids, petrogenetic and tectonic implications. Geology 20, 641-644. |
[21] | Eby, G. N., 2011. A-type granites: magma sources and their contribution to the growth of the continental crust. In: Molina, J. F., Scarrow, J. H., Bea, F., Montero, P. (Eds.), Seventh Hutton Symposium on granites and related rocks, Avila, Spain, Abstracts Book with Attendees Addresses, 50–51. |
[22] | El Bouseily, A. M., El-Sokkary, A. A., 1975. The relation between Rb, Ba, and Sr in granitic rocks. Chem. Geol. 16, 207-219. |
[23] | El-Gaby, S., 1975. Petrochemistry and geochemistry of some granites from Egypt. Neus. Jahrb. Mineral. Abh. 124, 147–189. |
[24] | El Hadek, H. H. 2016. Rare-metal granites and their related mineralization, Central Eastern Desert, Egypt. PhD thesis, Geology Department, Faculty of Science, Assiut University. (in press.) |
[25] | Fersman, A. E., 1931. Les pegmatites, leur importance scientifique et pratique, Academy of Science U. S. S. R., Lenningrad: Translation in French by J. Thoreau, Louvain, 3 vols., 1951. |
[26] | Geng, H., Sun, M., Yuan, C., Xiao, W., Xian, W., Zhao, G., Zhang, L., Wong, K., Wu, F., 2009. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chem. Geol. 266, 373–398. |
[27] | Greenberg, J. K., 1981. Characteristics and origin of Egyptian younger granites: Summary. Geol. Soc. Amer. Bull. 1. 92, 224-232. |
[28] | Gu, L. X., Zhang, Z. Z., Wu, C. Z., Gou, X. Q., Liao, J. J., Uang, H., 2011. A topaz- and amazonite-bearing leucogranite pluton in the eastern Xinjiang, NW China and its zoning. J. Asian Earth Sci. 42, 885–902. |
[29] | Haapala, I., 1995. Metallogeny of the rapakivi granites. Mineral. Petrol. 54, 141–160. |
[30] | Hassanen, M. A., 1997. Post-collision, A-type granites of Homrit Waggat complex, Egypt: petrological and geochemical constraints on its origin. Precam. Res. 82, 211-236. |
[31] | Hildreth, E. W., 1981. Gradients in silicic magma chambers; implications for lithospheric magmatism. J. Geophys. Res. 86, 10153-10192. |
[32] | Hussein, A. A., Aly, M. M., El-Ramly, M. F., 1982. A proposed new classification of the granites of Egypt. J. Volcano. Geotherm. Res. 14, 187-198. |
[33] | Inger, S., Harris, N., 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J. Petrol. 34, 345-368. |
[34] | Irber, W., 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 63, 489–508. |
[35] | Jackson, N. J., Walsh, J. N., Pegram, E., 1984. Geology, geochemistry and petrogenesis of late Precambrian granitoids in the central Hijaz region of the Arabian Shield. Contrib. Mineral. Petrol. 87, 205-219. |
[36] | Jung, S., Hoernes, S., Mezger, K., 2000. Geochronology and petrogenesis of Pan-African, syn- tectonic, S-type and post-tectonic A-type granite (Namibia). — products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos 50, 259–287. |
[37] | Kaur, P., Chaudhri, N., Hofmann, A. W., Raczek, I., Okrusch, M., Skora, S., Baumgartner, L. P., 2012. Two-stage, extreme albitization of A-type granites from Rajasthan, NW India. J. Petrol. 0, 1-30. |
[38] | Kebede, T., Koeberl, C., 2003. Petrogenesis of A-type granitoids from the Wallagga area, western Ethiopia: constraints from mineralogy, bulk-rock chemistry, Nd and Sr isotopic compositions. Precam. Res. 121, 1-24. |
[39] | Keppler, H., Wyllie, P. J., 1991. Partiontiong of Cu, Sn, Mo, U and Th between melt and aqueous fluid in the systems haplogranite – H2O – HCl and haplogranite – H2O – HF. Contrib. Mineral. Petrol. 109, 139-150. |
[40] | King, P. L., White, A. J. R., Chappell, B. W., Allen, C. M., 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 38 (3), 371–391. |
[41] | Kovalenko, V. I., 1978. The genesis of rare metal granitoids and related ore deposits: In: Štemprok, M., Burnol, L. and Tischendorf, G. (eds.), metallization associated with acid magmatism. Czech. Geol. Surv., Prague 3, 235-248. |
[42] | Li, H., Watanabe, K., Yonezu, K., 2014. Geochemistry of A-type granites in the Huangshaping polymetallic deposit (South Hunan, China): Implications for granite evolution and associated mineralization. J. Asian Earth Sci. 88, 149-167. |
[43] | MacDonald, R., Smith, R. L., 1987. Relationships between silicic plutonism and volcanism; Geochemical evidence, in the origin of granites, Abstracts; A symposium: Royal societies of Edinburgh and London, 1-2. |
[44] | Maniar, P. D., Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull. 101, 635–643. |
[45] | Manning, D. A. C., Hamilton, D. L., Henderson, C. M. B., Dempsey, M. J., 1980. The probable occurrence of interstitial Al in hydrous, F-bearing and F-free aluminosilicate melts. Contrib. Mineral. Petrol. 75, 256–262. |
[46] | Mao, W., Li, X., Wang, G., Xiao, R., Wang, M., Li, Y., Ren, M., Bai, Y., Yang, F., 2014. Petrogenesis of the Yangzhuang Nb- and Ta-rich A-type granite porphyry in West Junggar, Xinjiang, China. Lithos 198, 172–183. |
[47] | Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31 (6), 529–532. |
[48] | Moghazi, A. M., Mohamed, F. H., Kanisawa, S., 1999. Geochemical and petrological evidence of calc-alkaline and A-type magmatism in the Homrit Waggat and EI-Yatima areas of eastern Egypt. J. Afri. Earth Sci. 29 (3), 535-549. |
[49] | Mohamed, F. H., 1993. Rare-metal-bearing and barren granites, Eastern Desert of Egypt: geochemical characterization and metallogenetic aspects. J. Afr. Earth Sci. 17 (4), 525-539. |
[50] | Mohamed, F. H., Hassanen, M. A., Matheis, G., Shalaby, M. H., 1994. Geochemistry of the Wadi Hawashia granite complex, northern Egyptian Shield. J. Afr. Earth Sci. 19, 61–74. |
[51] | Nardi, L. V. S., Bonin, B., 1991. Post-orogenic and non-orogenic alkaline granite associations: the Saibro intrusive suite, southern Brazil – a case study. Chem. Geol. 92, 197-211. |
[52] | Patiño Douce, A. E., 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25, 743–746. |
[53] | Patiño Douce, A. E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez, C., and Vigneresse, J. L., eds., Understanding Granites: Integrating New and Classical Techniques: Geol. Soc. London, Spec. Publ. 168, 55–75. |
[54] | Pearce, J. A., Harris, N. B., Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983. |
[55] | Pérez-Soba, C., Villaseca, C., 2010. Petrogenesis of highly fractionated I-type peraluminous granites: La Pedriza pluton (Spanish Central System). Geol. Acta 8 (2), 131–149. |
[56] | Pichavant, M., Manning, D. A. C., 1984. Petrogenesis of tourmaline –granites and topaz-granites, the contribution of experimental data: Phys. Earth Planet. Int. 35, 31-50. |
[57] | Rogers, J. J. W., Greenberg, J. K., 1981. Trace elements in continental-margin magmatism: Part 3. Alkali granites and their relationship to cratonization. Geol. Soc. Amer. Bull. pt. 1, 92, 6-9. |
[58] | Schwartz, M. O., 1992. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids—examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineral. Deposita 27, 101–108. |
[59] | Shearer, C. K., Papike, J. J., Laul, J. C., 1985. Chemistry of potassium feldspar from three zoned pegmatites, Black Hills, South Dakota: implications concerning pegmatite evolution. Geochim. Cosmochim. Acta 49, 663-673. |
[60] | Štemprok, M., 1982. Tin- fluorine relationships in ore-bearing assemblages. In: Evans, A. M., (ed), Metallization associated with acid magmatism. John Willy and sons Ltd, Chichester. England, 321-337. |
[61] | Stern, R. J., Hedge, C. E., 1985. Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Amer. J. Sci. 285, 97–127. |
[62] | Stern, R. J., Gottfried, D., 1986. Petrogenesis of a Late Precambrian (575-600 Ma) bimodal suite in northeast Africa. Contrib. Mineral. Petrol. 92, 492-501. |
[63] | Streckeisen, A., LeMaitre, R. W., 1979. A chemical approximation to the modal QAP classification of the igneous rocks. Neus. Jahrb. Mineral., Abh., 136, 169-206. |
[64] | Strong, D. F., 1988. A review and model for granite-related mineral deposits. In: Taylor, R. P. and Strong, D. F. (eds) Recent advances in the geology of granite-related mineral deposits. Can. Inst. Min. Metall. 39, 424–445. |
[65] | Sun, S. S., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D., Norry, M. J. (Eds.), Magmatism in Ocean Basins. Geol. Soc. London, Spec. Publ. 42, 313–345. |
[66] | Swaka, W. N., Heizler, M. T., Kistler, R. W., Chappell, B. W., 1990. Geochemistry of highly fractionated I- and S-type granites from the tin-tungsten province of western Tasmania. In: Stein, H. T. and Hannah, T. L. (eds.), Ore-bearing granite systems, petrogenesis and mineralizing processes. Geol. Soc. Amer. Spec. Pap. 246, 161-179. |
[67] | Watson, E. B., Harrison, T. M., 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types: Earth Planet. Sci. Lett. 64, 295–304. |
[68] | Whalen, J. B., Currie, K. L., 1990. The Topsails igneous suite, western Newfoundland; Fractionation and magma mixing in an ‘orogenic’ A-type granite suite. Ore-bearing granite systems; petrogenesis and mineralizing processes. Geol. Soc. Amer. Spec. Pap. 246, 287–299. |
[69] | Whalen, J. B., Currie, K. K., Chappell, B. W., 1987. A-type granites, geochemical characteristics, discrimination and petrogenesis: Contrib. Mineral. Petrol. 95, 407-419. |
[70] | Wu, F. Y., Sun, D. Y., Li, H., Jahn, B. M., Wilde, S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 187, 143–173. |
[71] | Xiaolin, X., Zhenhua, Z., Jinchu, Z., Bing, R., Mingyuan, L., 1998. Partitioning of F between aqueous fluids and albite granite melt and its petrogenetic and metallogenetic significance. Chin. J. Geochem. 17, 303-310. |
[72] | Yu, J. H., O’Reilly, S. Y., Zhao, L., Griffin, W. L., Zhang, M., Zhou, X., Jiang, S.-Y., Wang, L. J., Wang, R. C., 2007. Origin and evolution of topaz-bearing granites from the Nanling Range, South China: a geochemical and Sr–Nd–Hf isotopic study. Mineral. Petrol. 90, 271–300. |
[73] | Zaraisky, G. P., Aksyuk, A. M., 2005. Petrogenesis of rare metal calc-alkaline granites. In: Proceedings of 10th All-Russia Petrographic Conference. Petrography of the 21th Century. Petrology and Ore Potential of CIS Regions and the Baltic Shield, Apatity, Russia, (Apatity, 2005), 93–95. |
[74] | Zaraysky, G. P., Alfereva, J. O., Udoratina, O. V., 2007. Geochemical features of the Etyka tantalum deposit in Eastern Transbaikalia. Stellenbosch University (South Africa), Sixth International Hutton Symposium, 232-233. |