






Vol.3 , No. 1, Publication Date: Feb. 15, 2016, Page: 12-18
[1] | Kanaa Thomas Florent Noël, Department of Mechanical Engineering, Higher Technical Teacher Training College (HTTTC), University of Bamenda, Bambili, Cameroon; Laboratory of Electronics, Electrotechnics, Automation and Telecommunications (LEEAT), University of Douala, Douala, Cameroon. |
[2] | Tchiotsop Daniel, Laboratory of Automation and Applied Computer Science (LAIA), Fotso Victor University Institute of Technology (IUT-FV), University of Dschang, Bandjoun, Cameroon. |
[3] | Fogue Médard, Laboratory of Environmental and Industrial Systems Engineering (LISIE), Fotso Victor University Institute of Technology (IUT-FV), University of Dschang, Bandjoun, Cameroon. |
[4] | Ngongang Ludovic, Department of Mechanical Engineering, Higher Technical Teacher Training College (HTTTC), University of Bamenda, Bambili, Cameroon. |
[5] | Tsague Pierre Youri, Department of Mechanical Engineering, Higher Technical Teacher Training College (HTTTC), University of Bamenda, Bambili, Cameroon. |
[6] | Njeugna Ebénézer, Laboratory of Mechanics and Adapted Materials (LAMMA), Advanced Teacher Training College for Technical Education (ENSET), University of Douala, Douala, Cameroon. |
This paper aims at assessing experimentally, on the field and by image, the main roughness parameters on work pieces made-up of Aluminum, Bronze and steel through milling, rectification and bedding operations in order to establish the contribution of the tool’s lifespan as well as the overriding factors in the final appreciation of the surface profile. The 2D sampling and the non-contact methods of roughness parameters assessment have been deployed, respectively on the surface of pieces and on its corresponding image texture. With 81.5% as follow-up rate of the maximum profile height (Ra) values with those of the standard (ISO norms), we appreciated the roughness behavior in relation with the material and the tool’s lifespan on the milling process. The study revealed that depending on the using stage of the tool, there is a net improvement or degradation of the roughness. And so, the surface profile and the final roughness take into account the machining process, the tool and machine-tool added to the measurement device, measuring techniques and the nature of the surface.
Keywords
Roughness, Tool’s Lifespan, Milling, Machining, Optical Microscopy
Reference
[01] | R. Dietrich, D. Garsaud, S. Gentillon, M. Nicolas (2005). Précis de Méthodes d’usinage, Méthodologie, Production et Normalisation. AFNOR Nathan, Paris. |
[02] | G. P. Petropoulus, C. N. Pandazaras, J. P. Davim (2010). Surface texture characterization and evaluation related to machining – Surface integrity in machining. Davim, J. Paulo, Springer-Verlag London. |
[03] | Tourab Mahamed (2003). Influences des paramètres du régime de coupe sur les fonctions finales de Rugosité et de Dureté de surfaces des Aciers. Thèse de Magister, Université Badji Mokhtar, Algeria. |
[04] | H. Bouchelaghem, M. A .yallese, S. Belhadi, N .Kribes, K .Bouacha (2007). Influence des conditions de coupe sur la rugosité de l’acier traité AISI D3 usiné avec un outil CBN. In: Congres Algérien de Mécanique de Construction, Alger, Algeria. |
[05] | J. C. Wyant, C. L. Koliopoulos, B. Bhushan, O. E. George (1984). An optical profilometer for surface characterization of magnetic media. ASLE Trans 27: 101-113. |
[06] | C. Gazanhes, A. Calaora, R. Condat (1980). Mesure de rugosité par interférométrie acoustique et corrélation de speckles. Revue de Physique Appliquée, jpa-00244880, 15 (10): pp. 1553-1561. |
[07] | G.P. Petropoulos (2007). Multi-parameter analysis and modelling of engineering surface texture. Journal of Achievements in Materials and Manufacturing Engineering - JAMME 24: issue 1. |
[08] | T. Jeyapoovan, M. Murugan (2013). Surface roughness classification using image processing. Elsevier journal, 46 : 2065-2072. |
[09] | M. Bourebia, L. Laouar, K. Abdelaziz (2010). Procédés d’usinage – effet sur la rugosité de surface. In: Première Conférence Internationale sur la Mécanique Avancée. Alger, Algeria. |
[10] | S. G. Ghalme, A. Mankar, Y. J. Bhalerao (2013). Effect of lubricant viscosity and surface roughness on coefficient of friction in rolling contact. Tribology in Industry (vol.35), 4: 330-336. |
[11] | M. T. Hayajneh, M. S. Tahat, J. Bluhm (2007). A Study of the Effects of Machining Parameters on the Surface Roughness in the End-Milling Process. Jordan Journal of Mechanical and Industrial Engineering – JJMIE (Vol 1) 2: 1–5. |
[12] | J. F. Debongnie (2013). Compléments de Fabrication Mécanique et F.A.O. (LMECA2453). Première Partie, 7 septembre 2013, Édition 2013, entièrement refondue. |
[13] | M. Aruna, V. Dhanalakshmi (2010). Response surface methodology in finish turning INCONEL 718. International Journal of Engineering Science and Technology, (vol. 2) 9: 4292-4297. |
[14] | Réné Kamguem (2013). Inspection automatique et sans contact de la rugosité des pièces usinées. Thesis in article, University of Quebec, Canada. |
[15] | M. S. Nixon, A. S. Aguado (2008). Feature Extraction and Image Processing. Newnes, Bristish Library Catalogue, Britain. |
[16] | François Blateyron (2006). 3D Parameters and New Filtration Techniques. In: Conference paper in Filtration Techniques. Tokyo, Japan. |
[17] | Digital Surf (2014). MountainsMap: Surface Imaging and Metrology Software. Version 7.2.7334. www.mountainsmap.com. France. |