ISSN Print: 2381-1072  ISSN Online: 2381-1080
Engineering and Technology  
Manuscript Information
 
 
Effect of Surface Roughness of Filter Media on Filtration Flux
Engineering and Technology
Vol.2 , No. 6, Publication Date: Oct. 20, 2015, Page: 345-351
1405 Views Since October 20, 2015, 1151 Downloads Since Oct. 20, 2015
 
 
Authors
 
[1]    

Hiroshi Satone, Department of Chemical Engineering, Graduate School of Engineering, University of Hyogo, Shosha, Himeji, Hyogo, JAPAN.

[2]    

Masaya Morita, Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, JAPAN.

[3]    

Takayoshi Kiguchi, Graduate School of Engineering and Science, Shibaura Institute of Technology, Toyosu, Koto-ku, Tokyo, JAPAN.

[4]    

JunIchiro Tsubaki, Department of Research, Nagoya Industrial Science Research Institute, Sakae, Naka-ku, Nagoya, Aichi, JAPAN.

[5]    

Takamasa Mori, Department of Chemical Science and Technology, Faculty of Bioscience and Technology, Hosei University, Kajino-cho, Koganei, Tokyo, JAPAN.

 
Abstract
 

A new filtration system using a ceramic tube filter with an internal spiral guide rod was developed. In this paper, to investigate the effect of the surface roughness of the filter media on the filtration flux, waste water with ink as sample slurry was filtered by various filters with different surface roughnesses. The decrease ratio of filtration flux was shown to have a close relation to the surface roughness of the filter, which was characterized by image analysis. The filter media with a smooth surface was found to be most suitable for this system because such a filter can prevent a disturbed flow field in the filter, which helps in preventing fouling and maintaining a constant filtration flux for a long time.


Keywords
 

Filter Tubes, Cross-Flow Filtration, Surface Analysis, Filter Media Testing


Reference
 
[01]    

J. Murkes, C. G. Carlsson, Crossflow Filtration: Theory and Practice, John Wiley & Sons, 1988

[02]    

M. R. Mackley, N. E. Sherman, Chemical Engineering Science 1992, 47, 3084.

[03]    

S. G. Redkar, R. H. Davis, AIChE Journal 1995, 41, 501.

[04]    

M. Shirato, H. Yamazaki, T. Murase, M. Iwata, T. Ito, J. Chem. Eng. Japan 1987, 13, 363.

[05]    

R. Bouzerar, P. Paullier, M. Y. Jaffrin, Desalination 2003, 158, 79.

[06]    

K. Tanida, Chemical Engineering 2003, 9, 685.

[07]    

L. H. Ding, M. Y. Jaffrin, M. Mellal, G. He, Journal of Membrane Science 2006, 276, 232.

[08]    

J. Tsubaki, K. Kuno, I. Inamine, M. Miyazawa, J. Soc. Powder Technol., Japan 2003, 40, 432.

[09]    

T. Mori, M. Ito, T. Sugimoto, H. Mori, J. Tsubaki, J. Soc. Powder Technol., Japan 2004, 41, 522.

[10]    

T. Mori, K. Kuno, M. Ito, J. Tsubaki, T. Sakurai, Advanced Powder Technol. 2006, 17, 319.

[11]    

H. Satone, T. Mamiya, A. Harunari, T. Mori, J. Tsubaki, Advanced Powder Technol. 2008, 19, 293.

[12]    

H. Satone, T. Mamiya, T. Mori, J. Tsubaki, Advanced Powder Technol. 2009, 20, 41.

[13]    

J. Tsubaki, T. Mori, T. Unenbat, B. Ochirkhuyag, J. Soc. Powder Technol., Japan 2006, 43, 731.

[14]    

B. Ochirkhuyag, T. Mori, J. Tsubaki, T. Katsuoka, H. Satone, H. Choi, T. Sugimoto, Chemical Engineering Science 2008, 63, 5274.

[15]    

T. Katsuoka, H. Satone, H. Yamada, T. Mori, J. Tsubaki, Powder Technology 2011, 207, 154.

[16]    

H. Satone, T. Katsuoka, K. Asai, T. Yamada, T. Mori, J. Tsubaki, Powder Technology 2011, 213, 48.

[17]    

H. G. Gomaa, R. Sabouni, Chemical Engineering Research and Design 2014, 92, 1771.

[18]    

Z. Zhong, D. Li, B. Zhang, W. Xing, Separation and Purification Technology 2012, 90, 140.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership