ISSN Print: 2381-1072  ISSN Online: 2381-1080
Engineering and Technology  
Manuscript Information
 
 
Assessment of Several Turbulence Models as Applied to Supersonic Flows in 2D – Part IV
Engineering and Technology
Vol.2 , No. 5, Publication Date: Jul. 7, 2015, Page: 297-311
1332 Views Since July 7, 2015, 867 Downloads Since Jul. 7, 2015
 
 
Authors
 
[1]    

Edisson S. G. Maciel, Aeronautical Engineering Division (IEA), Aeronautical Technological Institute (ITA), São José dos Campos, SP, Brazil.

 
Abstract
 

In the present work, the Van Leer flux vector splitting scheme is implemented to solve the two-dimensional Favre-averaged Navier-Stokes equations. The Zhou, Davidson and Olsson, Kergaravat and Knight, Yoder, Georgiadids and Orkwis, Coakley, and Rumsey, Gatski, Ying and Bertelrud two-equation models are used in order to close the problem. The physical problem under study is the supersonic flow around a simplified version of the VLS (Brazilian “Satellite Launcher Vehice”) configuration. The results have demonstrated that the stagnation pressure ahead of the VLS configuration is better predicted by the Kergaravat and Knight turbulence model in its Launder and Spalding variant.


Keywords
 

Zhou et al. Model, Kergaravat and Knight Model, Yoder et al. Model, Coakley Model, Rumsey et al. Model, Navier-Stokes Equations


Reference
 
[01]    

P. Kutler, “Computation of Three-Dimensional, Inviscid Supersonic Flows”, Lecture Notes in Physics, vol. 41, pp. 287-374, 1975.

[02]    

B. Van Leer, “Flux-Vector Splitting for the Euler Equations”, Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics, E. Krause, Editor, Lecture Notes in Physics, vol. 170, pp. 507-512, Springer-Verlag, Berlin, 1982.

[03]    

R. Radespiel, and N. Kroll, “Accurate Flux Vector Splitting for Shocks and Shear Layers”, Journal of Computational Physics, vol. 121, pp. 66-78, 1995.

[04]    

E. S. G. Maciel, “Assessment of Several Turbulence Models as Applied to Supersonic Flows in 2D – Part I”, Engineering and Technology, Vol. 2, Issue 4, 2015, June, pp. 220-234.

[05]    

E. S. G. Maciel, and N. G. C. R. Fico Jr., “Estudos de Escoamentos Turbulentos Utilizando o Modelo de Baldwin e Lomax e Comparação entre Algoritmos Explícitos e Implícitos”, Proceedings of the III National Congress of Mechanical Engineering (III CONEM), Belém, PA, Brazil, 2004. [CD-ROM]

[06]    

B. S. Baldwin, and H. Lomax, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows”, AIAA Paper 78-257, 1978.

[07]    

R. W. MacCormack, “The Effect of Viscosity in Hypervelocity Impact Cratering”, AIAA Paper 69-354, 1969.

[08]    

T. H. Pulliam, and D. S. Chaussee, “A Diagonal Form of an Implicit Approximate-Factorization Algorithm”, Journal of Computational Physics, vol. 39, pp. 347-363, 1981.

[09]    

A. Jameson, W. Schmidt, and E. Turkel, “Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes”, AIAA Paper 81-1259, 1981.

[10]    

E. S. G. Maciel, and N. G. C. R. Fico Jr., “High Resolution Algorithms Coupled with Three Turbulence Models Applied to an Aerospace Flow Problem – Part I”, AIAA Paper 06-0292, 2006. [CD-ROM]

[11]    

T. Cebeci, and A. M. O. Smith, “A Finite-Difference Method for Calculating Compressible Laminar and Turbulent Boundary Layers”, Journal of Basic Engineering, Trans. ASME, Series B, vol. 92, no. 3, pp. 523-535, 1970.

[12]    

P. R. Sparlat, and S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows”, AIAA Paper 92-0439, 1992.

[13]    

A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, Journal of Computational Physics, vol. 49, pp. 357-393, 1983.

[14]    

E. S. G. Maciel, and N. G. C. R. Fico Jr., “Comparação Entre Modelos de Turbulência de Duas Equações Aplicados a um Problema Aeroespacial”, Proceedings of the Primer Congreso Argentino de Ingeniería Mecánica (I CAIM), Bahía Blanca, Argentina, 2008. [CD-ROM]

[15]    

F. Jacon, and D. Knight, “A Navier-Stokes Algorithm for Turbulent Flows Using an Unstructured Grid and Flux Difference Splitting”, AIAA Paper 94-2292, 1994.

[16]    

Y. Kergaravat, and D. Knight, “A Fully Implicit Navier-Stokes Algorithm for Unstructured Grids Incorporating a Two-Equation Turbulence Model”, AIAA Paper 96-0414, 1996.

[17]    

G. Zhou, L. Davidson, and E. Olsson, “Turbulent Transonic Airfoil Flow Simulation Using a Pressure-Based Algorithm”, AIAA Journal, Vol. 33, No. 1, January, pp. 42-47, 1995.

[18]    

D. A. Yoder, N. J. Georgiadids, and P. D. Orkwis, 1996, “Implementation of a Two-Equation K-Omega Turbulence Model in NPARC”, AIAA Paper 96-0383.

[19]    

T. J. Coakley, “Development of Turbulence Models for Aerodynamic Applications”, AIAA Paper 97-2009, 1997.

[20]    

C. L. Rumsey, T. B. Gatski, S. X. Ying, and A. Bertelrud, “Prediction of High-Lift Flows Using Turbulent Closure Models”, AIAA Journal, Vol. 36, No. 5, May, pp. 765-774, 1998.

[21]    

E. S. G. Maciel, “Analysis of Convergence Acceleration Techniques Used in Unstructured Algorithms in the Solution of Aeronautical Problems – Part I”, Proceedings of the XVIII International Congress of Mechanical Engineering (XVIII COBEM), Ouro Preto, MG, Brazil, 2005. [CD-ROM]

[22]    

E. S. G. Maciel, “Analysis of Convergence Acceleration Techniques Used in Unstructured Algorithms in the Solution of Aerospace Problems – Part II”, Proceedings of the XII Brazilian Congress of Thermal Engineering and Sciences (XII ENCIT), Belo Horizonte, MG, Brazil, 2008. [CD-ROM]

[23]    

R. W. Fox, and A. T. McDonald, “Introdução à Mecânica dos Fluidos”, Ed. Guanabara Koogan, Rio de Janeiro, RJ, Brazil, 632 p, 1988.

[24]    

E. S. G. Maciel, “Assessment of Several Turbulence Models as Applied to Supersonic Flows in 2D – Part II”, Submitted to Engineering and Technology (under review), 2015.

[25]    

J. D. Anderson Jr., “Fundamentals of Aerodynamics”, McGraw-Hill, Inc., EUA, 563p, 1984.

[26]    

K. Y. Chien, “Predictions of Channel and Boundary Layer Flows with a Low-Reynolds-Number Turbulence Model”, AIAA Journal, Vol. 20, January, pp. 33-38, 1982.

[27]    

C. G. Speziale, S. Sarkar, and T. B. Gatski, “Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach”, Journal of Fluid Mechanics, Vol. 227, pp. 245-272, 1991.

[28]    

E. S. G. Maciel, “Assessment of Several Turbulence Models as Applied to Supersonic Flows in 2D – Part III”, Engineering and Technology, Vol. 2, Issue 4, 2015, June, pp. 235-255.

[29]    

B. E. Launder, and D. B. Spalding, “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.

[30]    

D. C. Wilcox, “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models”, AIAA Journal, Vol. 26, November, pp. 1299-1310, 1988.

[31]    

F. R. Menter, and C. L. Rumsey, “Assessment of Two-Equation Turbulence Models for Transonic Flows”, AIAA Paper 94-2343, 1994.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership