ISSN Print: 2381-1013  ISSN Online: 2381-1021
American Journal of Agricultural Science  
Manuscript Information
 
 
Evaluation of Potato Genotypes for Desirable Processing Tuber Attributes in Uganda
American Journal of Agricultural Science
Vol.7 , No. 1, Publication Date: Feb. 14, 2020, Page: 17-24
537 Views Since February 13, 2020, 327 Downloads Since Feb. 13, 2020
 
 
Authors
 
[1]    

Edgar Muhumuza, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

[2]    

Richard Edema, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

[3]    

Prossy Namugga, Kachwekano Zonal Agricultural Research and Development Institute, National Agricultural Research Organization, Kabale, Uganda.

[4]    

Alex Barekye, Kachwekano Zonal Agricultural Research and Development Institute, National Agricultural Research Organization, Kabale, Uganda.

 
Abstract
 

Potato (Solanumtuberosum L.) is a major food and cash crop, mainly grown by small-scale farmers in Uganda. The available potato varieties have not been evaluated for combined yield and processing tuber attributes. This study evaluated selected potato genotypes for specific processing tuber attributes with acceptable yield. Twenty one advanced clones and nine released varieties were evaluated for some biochemical properties. The field trial was laid out as a 5 X 6 alpha lattice design with three replications at Kachwekano research station. Results showed significant differences (P ≤ 0.01) among the genotypes for dry matter content that ranged from 16.49% to 21.85%. The best performing genotypes were 395438.1 (21.85%), 395096.2 (20.99%), 3950077.12 (20.97%). Reducing sugars were significantly different (P ≤0.001) among the genotypes and ranged from 0.4mg/g (db) to 11.3mg/g (db). The best performing genotype was 395438.1 (0.4 mg/g (db)). Genotypes were significantly different (P ≤ 0.001) for total tuber yield and yield components. The mean total tuber yield was 31.7tha-1 with the highest yielding genotype being 392657.8 (50.4tha-1). Dry matter content and reducing sugars were negatively correlated (P≤ 0.05). Total tuber yield had positive correlation (P ≤ 0.001) to average weight per tuber, tuber weight per plant and (P ≤ 0.01) to number of tubers per plant. Among the genotypes evaluated there were genotypes that exhibited the desired levels of high dry matter content (≥20%) and low reducing sugars (≤3 mg/g) which could be exploited in variety release and potato improvement strategies basing on processing attributes.


Keywords
 

Dry Matter Content, Reducing Sugars, Potato, Uganda


Reference
 
[01]    

CIP,. (Centro Internacional de la Papa), 2018. Potato facts and figures [WWW Document]. URL http://cipotato.org/potato/facts/ (accessed 9.9.18).

[02]    

Wabbi, J. B., Ayo, S., Mugonola, B., Taylor, D. B., Kirinya, J., Tenywa, M., 2013. The performance of potato markets in South Western Uganda. Journal of Development and Agricultural Economics. 5, 225–235. doi: 10.5897/JDAE12.124.

[03]    

Namugga, P., Melis, R., Sibiya, J., Barekye, A., 2017a. Participatory assessment of potato farming systems, production constraints and cultivar preferences in Uganda. Australian Journal of Crop Sciences. 11, 932–940. doi: 10.21475/ajcs.17.11.08.pne339.

[04]    

Scott, G. J., Labarta, R., Suarez, V., 2013. Booms, Busts, and Emerging Markets for Potatoes in East and Central Africa 1961-2010. Potato Research. 56, 205–236. doi: 10.1007/s11540-013-9240-2.

[05]    

UBOS., 2018 Statistical abstract. Uganda bureau of statistics, 2018.

[06]    

Tesfaye, A., Lemaga, B., Mwakasendo, J. a, Nzohabonayoz, Z., Mutware, J., Wanda, K. Y., Kinyae, P. M., Ortiz, O., Crissman, C., 2010. Markets for fresh and frozen potato chips in the ASARECA region and the potential for regional trade: Ethiopia, Tanzania, Rwanda, Kenya, Burundi and Uganda (International Potato Center (CIP) No. 2010-1).

[07]    

Arslanoglu, F., Aytac, S., Oner, E. K., 2011. Morphological characterization of the local potato (Solanum tuberosum L.) genotypes collected from the Eastern Black Sea region of Turkey. African Jounal of. Biotechnology. 10, 922–932. doi: 10.5897/AJB10.1602.

[08]    

Bradshaw, J. E., Stewart, H. E., Wastie, R. L., Dale, M. F. B., Phillips, M. S., 1995. Use of Seedling Progeny Tests for Genetic-Studies as Part of a Potato (Solanum-Tuberosum Subsp Tuberosum) Breeding Program. Theoretical and Applied Genetics. 90, 899–905.

[09]    

Bradshaw, J. E., Todd, D., N, R. W., 2000. Use of tuber progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and. Applied Genetics. 100, 772–781.

[10]    

Elameen, A., Larsen, A., Klemsdal, S. S., Fjellheim, S., Sundheim, L., Msolla, S., Masumba, E., Rognli, O. A., 2011. Phenotypic diversity of plant morphological and root descriptor traits within a sweet potato, Ipomoea batatas (L.) Lam., germplasm collection from Tanzania. Genetic Resources and Crop Evolution. 58, 397–407. doi: 10.1007/s10722-010-9585-1.

[11]    

Namugga, P., Sibiya, J., Melis, R., Barekye, A., Namugga, P., Sibiya, J., Melis, R., Phenotypic, A. B., 2017b. Phenotypic characterisation of potato (Solanum tuberosum) genotypes in Uganda. South African Journal of Plant and Soil 1862, 1–8. doi: 10.1080/02571862.2017.1370561.

[12]    

Mohammadi, S. a., Prasanna, B. M., 2003. Analysis of Genetic Diversity in Crop Plants — Salient Statistical Tools. Crop Science. 43, 1235–1248. doi: 10.2135/cropsci2003.1235.

[13]    

Abong, G. O., Okoth, M. W., Karuri, E. G., Kabira, J. N., Mathooko, F. M., 2009a. Evaluation of selected Kenyan potato cultivars for processing into French fries. Journal of Animal and Plant Science. 2, 141–147.

[14]    

Bisognin, D. A., Sergio, T. de F., Pereira, E. I. P., Gomez, A. C. S., Brackmann, A., Nicoloso, F., 2012. Processing quality of potato tubers produced during autumn and spring and stored at different temperatures. Horticultura Brasileira. 30, 91–98.

[15]    

Iragaba, P., 2014. Inheritance and stability of earliness in potato (solanum tuberosum l.). Msc. Thesis, Makerere University.

[16]    

Kesiime, V. E., Tusiime, G., Kashaija, I. N., Edema, R., Gibson, P., Namugga, P., 2016. Characterization and Evaluation of Potato Genotypes (Solanum tuberosum L) for Tolerance to Drought in Uganda. American Journal of Potato Research. doi: 10.1007/s12230-016-9533-5.

[17]    

Nuwamanya, E., Baguma, Y., Wembabazi, E., Rubaihayo, P., 2011. A comparative study of the physicochemical properties of starches from root, tuber and cereal crops. African Journal of Biotechnology. 10, 12018–12030. doi: 10.5897/AJB10.2310.

[18]    

Kakuhenzire, R., Lemaga, B., Kashaija, I., Ortiz, O., Mateeka, B., 2013. Effect of crotalaria falcata in crop rotation and fallowing on potato bacterial wilt incidence, disease severity and latent infection in tubers and field soil. Biopesticides International. 9, 182–194.

[19]    

Namugga, P., Sibiya, J., Melis, R., Barekye, A., 2018. Yield Response of Potato (Solanum tuberosum L.) Genotypes to Late Blight Caused by Phytophthora infestans in Uganda. American Journal of Potato Research. doi 10.1007/s12230-018-9642-4.

[20]    

Esuma, W., Kawuki, R. S., Herselman, L., Labuschagne, M. T., 2016. Diallel analysis of provitamin A carotenoid and dry matter content in cassava (< i> Manihot esculenta< /i> Crantz). Breeding Science. 66, 627–635. doi: 10.1270/jsbbs.15159.

[21]    

Abong, G. O., Okoth, M. W., Imungi, J. K., Kabira, J. N., 2010. Evaluation of selected Kenyan potato cultivars for processing into potato crisps. Agriculture and Biology Journal of North America. 886–893. doi: 10.5251/abjna.2010.1.5.886.893.

[22]    

Asmamaw, Y., Tekalign, T., 2010. Specific Gravity, Dry Matter Concentration, pH, and Crisp-making Potential of Ethiopian Potato (Solanum tuberosum L.) Cultivars as Influenced by Growing Environment and Length of Storage Under Ambient Conditions. Potato Research. 53, 95–109. doi: 10.1007/s11540-010-9154-1.

[23]    

Mohammed, W., 2016. Specific Gravity, Dry Matter Content, and Starch Content of Potato (Solanum tuberosum L.) Varieties Cultivated in Eastern Ethiopia. East African Jounal of Sciences. 10, 87–102.

[24]    

Pedreschi, F., 2012. Frying of Potatoes: Physical, Chemical, and Microstructural Changes. Drying Technology. 30, 707–725. doi: 10.1080/07373937.2012.663845.

[25]    

Gebhardt, C., Menendez, C., Chen, X., Li, L., Schäfer-Pregl, R., Salamini, F., 2005. Genomic approaches for the improvement of tuber quality traits in potato. Acta Horticulturae. 684, 85–91. doi: 10.17660/ActaHortic.2005.684.11

[26]    

Manivel, P., Pandey, S. K., Singh, S. V, 2009. Repeatabilty of general and specific combining ability effects of seedling and clonal generations in potato. Electronic Journal of Plant Breeding. 43–46.

[27]    

Manivel, P., Singh, S. K. P. S. V, Kumar, D., 2010. Heterosis and combining ability for tuber dry matter and yield in potato (Solanum tuberosum L.) over two clonal generations under short-day sub- tropic conditions. Electronic Jounal of Plant Breeding. 1, 287–296.

[28]    

Abong, G. O., Okoth, M. W., Karuri, E. G., Kabira, J. N., Mathooko, F. M., 2009b. Levels of reducing sugars in eight Kenyan potato cultivars as influenced by stage of maturity and storage conditions. Journal of Animal and Plant Science. 2, 76–84.

[29]    

Kaur, S., Aggarwal, P., 2014. Studies on Indian Potato Genotypes for their Processing and Nutritional Quality Attributes. International Journal of Current Microbiology and Applied Science. 3, 172–177.

[30]    

Singh, B. P., Kumar, P., 2004. An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology. 247–256.

[31]    

De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Ooghe, W., Fraselle, S., Demeulemeester, K., Van Peteghem, C., Calus, A., Degroodt, J. M., Verhé, R., 2006. Selection criteria for potato tubers to minimize acrylamide formation during frying. Journal of Agricultural and Food Chemistry. 54, 2199–2205. doi: 10.1021/jf0525030.

[32]    

Shepherd, L. V. T., Bradshaw, J. E., Dale, M. F. B., McNicol, J. W., Pont, S. D. a, Mottram, D. S., Davies, H. V., 2010. Variation in acrylamide producing potential in potato: Segregation of the trait in a breeding population. Food Chemistry. 123, 568–573. doi: 10.1016/j.foodchem.2010.04.070.

[33]    

Muhinyuza, J. B., Shimelis, H., Melis, R., Sibiya, J., Gahakwa, D., Nzaramba, M. N., 2015. Yield Response and Late Blight Reaction of Potato Genotypes in Rwanda. American Journal of Potato Research. 92, 10–22. doi: 10.1007/s12230-014-9406-8.

[34]    

Muthoni, J., Shimelis, H., Melis, R., Kinyua, Z. M., 2014. Response of Potato Genotypes to Bacterial Wilt Caused by Ralstonia Solanacearum (Smith)(Yabuuchi et al.) In the Tropical Highlands. American Journal of Potato Research. 91, 215–232. doi: 10.1007/s12230-013-9340-1.

[35]    

Feltran, J. C., Lemos, L. B., Vieites, R. L., 2004. Technological quality and utilization of potato tubers. Scientia Agricola. 61, 593–603.

[36]    

Rahman, M., Roy, T. S., Chowdhury, I. F., 2016. Bio-chemical composition of different potato varieties for processing industry in Bangladesh. Agriculture-science and Practice. 2, 81–89. doi: 10.15835/AGRISP.97-98.1-2.11994.

[37]    

Sowokinos, J. R., Shocl, C. C., Stieber, T. D., Eldredge, E. R., 2000. Compositional and Enzymatic Changes Associated With the Sugar-End Defect in Russet Burbank Potatoes1 Culture of Potatoes. American Journal of Potato Research. 77, 47–56.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership