ISSN Print: 2381-1013  ISSN Online: 2381-1021
American Journal of Agricultural Science  
Manuscript Information
 
 
Effect of Lablab Green Manure on Population of Soil Microorganisms and Establishment of Common Bean (Phaseolus vulgaris L.)
American Journal of Agricultural Science
Vol.5 , No. 3, Publication Date: Nov. 5, 2018, Page: 44-54
869 Views Since November 5, 2018, 460 Downloads Since Nov. 5, 2018
 
 
Authors
 
[1]    

Oliver Otieno Okumu, Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya.

[2]    

James Muthomi, Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya.

[3]    

John Ojiem, Kenya Agricultural Livestock and Research Organization, Kibos, Kenya.

[4]    

Rama Narla, Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya.

[5]    

John Nderitu, Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya.

 
Abstract
 

Green manures improve soil health and fertility but application of undecomposed lablab residues lead to low crop establishment. The study was carried out to determine the effect of green manure on microbial population and establishment of bean crop. Bean varieties were planted on plots each treated with lablab green manure at one ton ha-1 over whole plots and in rows, DAP fertilizer was applied at 75 kg/ha. Data was collected on microbial population, crop emergence, root rot incidence and severity, and yield. Green manure incorporation increased soil organic carbon, nitrogen, phosphorus and potassium but reduced germination percentage by about 35% and increased incidences of root rot by 30% compared to plots without green manure. The population of root rot pathogens was significantly higher in plots treated with green manure two weeks after emergence while the population of saprophytic fungi was low. Plots treated with lablab green manure reduced grain and biomass yields by 25%. Green manure increases soil nutrients directly and improves crop establishment after decomposition. Results of the study revealed a considerable increase in the population of root rot pathogens with corresponding decrease in the population of antagonistic fungi thus the poor emergence and crop establishment can be associated with increase in population of root rot pathogens and stress experienced by seeds during decomposition


Keywords
 

Green Manure, Phaseolus vulgaris, Root Rot, Soil Health


Reference
 
[01]    

Celmeli, T., Sari, H., Canci, H., Sari, D., Adak, A., Eker, T., and Toker, C. 2018. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 8 (9): 166-175.

[02]    

Mwangi, S. N., Deng, A. L., and Kamau, A. W. 2008. Response of Kenyan varieties of common bean, Phaseolus vulgaris L., to infestation by Aphis fabae Scopoli. African Entomology 16: 196-202.

[03]    

Mildred, M. M. 2017. Effect of soil fertility and intercropping on the incidence and severity of root rot diseases of common bean Phaseolus vulgaris L. MSc. Thesis University of Nairobi.

[04]    

Rao, I. M., Miles, J. W., Beebe, S. E., and Horst, W. J. 2016. Root adaptations to soils with low fertility and aluminum toxicity. Annals of Botany 118: 593-605.

[05]    

Richard, P. O., and Ogunjobi, A. A. 2016. Effect of organic and inorganic fertilizer applications on phosphate solubilizing bacteria in the rhizosphere of maize (Zea mays L.). African Journal of Microbiology Research 10: 2021- 2028.

[06]    

Talgre, L., Lauringson, E., Makke, A., and Lauk, R. 2012a. Biomass production and nutrient binding of catch crops. Zemdirbyste Agriculture Journal 98: 251-258.

[07]    

Lemtiri, A., Degrune, F., Barbieux, S., Hiel, M. P., Chélin, M., Parvin, N., Vandenbol, M., Francis, F., and Colinet, G. 2016. Crop residue management in arable cropping systems under temperate climate. Part 1: Soil biological and chemical (phosphorus and nitrogen) properties. A review. Biotechnology, Agronomy, Society, and Environment 20: 236-244.

[08]    

Austin, A. T., and Ballare. C. L. 2010. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 107: 4618–4622.

[09]    

Gao, S. J., Cao, W. D., Gao, J. S., Huang, J. Bai, J. S., Zeng, N. H., and Shimizu, K. 2017. Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China. Journal of Integrative Agriculture 16: 959-966.

[10]    

Schnecker, J., Wild, B., Hofhansl, F., Alves, R. J. E., Bárta, J. Capek, P., and Hofer, A. 2014. Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS One 9 (4), e94076.

[11]    

Gougoulias, C., Clark, J. M., and Shaw, L. J. 2014. The role of soil microbes in the global carbon cycle: tracking the below‐ground microbial processing of plant‐derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture 94: 2362-2371.

[12]    

Condron, L., Stark, C., O’Callagan, M., and Huang, Z. 2010. The role of microbial communities in the formation and decomposition of soil organic matter, In Soil Microbiology and Sustainable Production (pp. 81-118. Springer, Dordrecht, 2010.

[13]    

Haramoto, E. R., and Gallandt, E. R. 2005. Brassica cover cropping: II. Effects on growth and interference of green bean (Phaseolus vulgaris L.) and redroot pigweed (Amaranthus retroflexus). Weed Science 53: 702-708.

[14]    

Kopp, M. M., Luz, V. K., Maia, L. C., Coimbra, J. L. M., Sousa, R. O., Carvalho, F. I. F., and Oliveira, A. C. 2010. Avaliação de genótipos de arroz sob efeito do ácido butírico. Acta Botanica Brasilica 24: 578-584. Retrieved from http://www.scielo.br/pdf/abb/v24n2/a27v24n2.pdf.

[15]    

Kumar, R., Mahajan, G., Srivastava, S., and Sinha, A. 2014. Green manuring: A boon for sustainable agriculture and pest management–A review. Agricultural Reviews 35: 196-206.

[16]    

Manici, L. M., Caputo, F., and Babini, V. 2004. Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant and Soil 263: 133-142.

[17]    

Nyberg, G., Tobella, B., Kinyangi, J., and Ilstedt, U. 2012. Soil property changes over a 120-yr chronosequence from forest to agriculture in Western Kenya. Hydrology and Earth System Sciences 16: 2085-2094.

[18]    

FAO-UNESCO. 1997. Soil map of the world. Revised Legend, edited by ISRIC, Wageningen.

[19]    

Kiplagat, J. K., Okalebo, J. R., Serrem, C. K., Mbakaya, D. S., and Jama. B. 2014. Determination of Appropriate Rate and Mode of Lime Application on Acid Soils of Western Kenya: Targeting Small Scale Farmers. In Challenges and Opportunities for Agricultural Intensification of the Humid Highland Systems of Sub-Saharan Africa, doi.org/ 10.1007/978-3-319-07662-1_15.

[20]    

Pfenning, L. H., and De Abreu, L. M. 2008. Saprophytic and plant pathogenic soil fungi. Chapter eight in A hand Book of Tropical Soil Biology, E. Jeroen Husing and David E. Bignel, Fatima, M. S, 153. London: Earth Scan.

[21]    

Okalebo, J. R., Gathua, K. W., and Woomer, P. L. 2002. Laboratory methods of plant and soil analysis: a working manual. TSBF-UNESCO, Nairobi, Kenya.

[22]    

Motsara, M. R., and Roy, R. N. 2008. Guide to laboratory establishment for plant nutrient analysis. Rome: Food and Agriculture Organization of the United Nations 19: 45-64.

[23]    

Saravanan, S., Sivakumar, T., Thamizhmani, R., and Senthilkumaran, R. 2013. Studies on microbial diversity in marine ecosystem of Parangipettai, Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences 2: 20-32.

[24]    

Nurbaya. K, Tutik K., Ade R, B., and Syamsuddin M. 2014. Growth rate and identification of Fusarium spp. assosiated with Aquillaria spp. from Nunukan regency, North Kalimantan”. International Journal of Current Research and Academic Review, 2 (11): 7–17.

[25]    

Nirenberg, H. I. 1981. A simplified method of Identifying Fusarium spp occurring on wheat. Canadian Journal of Botany, 9: 1599-1606.

[26]    

Okumu O. O., Muthomi, J. W., Mutegi, C. K., and Wagacha, J. W. 2016. Resistance of Kenyan wheat germplasm to Fusarium head blight and deoxynivalenol contamination. International Journal of Agronomy and Agricultural Research 9: 22-35.

[27]    

Muthomi, J. W., Mugambi, I. K., Ojiem, J., Chemining’wa, G. N. and Nderitu, J. H. 2014. Effect of incorporating lablab biomass in soils on root rot disease complex and yield of beans intercropped with maize. International Journal of AgriScience 4: 515-524.

[28]    

Medvecky, B., Ketterings, Q., and Nelson, E. 2007. Relationships among soil borne bean seedling diseases, Lablab purpureus L. and maize stover residue management, bean insect pests and soil characteristics in Trans Nzoia district, Kenya. Applied Soil Ecology 35: 107-119.

[29]    

Muengula-Manyi, M., Mukwa, L., Nkongolo, K. K., Tshilenge-Djim, P., Winter, S., Bragard, C., and Kalonji-Mbuyi, A., 2013. Assessing reactions of genetically improved and local cassava varieties to Cassava Mosaic Disease (CMD) infection in a savannah region of the DR-Congo. Annals of Agricultural Science 62: 99–104.

[30]    

El-Naim, A. M., Jabereldar, A. A., Ahmed, S. E., Ismaeil, F. M., and Ibrahim, E. A. 2012. Determination of suitable variety and plants per stand of cowpea (Vigna unguiculata L. Walp) in the sandy soil, Sudan. Advances in Life Sciences 2: 1-5.

[31]    

Lawes Agricultural Trust, Harpenden, 1991. Guide to the classical experiments. Rothamsted Experimental Station. UK.

[32]    

Brown, S., and Cotton, M. 2011. Changes in soil properties and carbon content following compost application: results of on-farm sampling. Compost Science and Utilization 19: 87-96.

[33]    

Zeid, H. A., Wafaa, H. M., Abou, E. I., Seoud, I. I., and Alhadad, W. A. A. 2015. Effect of organic materials and inorganic fertilizers on the growth, mineral composition and soil fertility of radish plants (Raphanus sativus L.) grown in sandy soil. Middle East Journal of Agriculture Research 4 (1), 77-87.

[34]    

Sitienei, R. C., Onwonga, R. N., Lelei, J. J., and Kamoni, P. 2017. Use of Dolichos (Lablab Purpureus L.) and combined fertilizers enhance soil nutrient availability, and maize (Zea Mays L.) yield in farming systems of Kabete Sub County, Kenya. Agricultural Science Research Journal 7: 47–61.

[35]    

Benjawan, L., Sihawong, S., Chayaprasert, W., and Liamlaem, W. 2015. Composting of biodegradable organic waste from Thai household in a semi-continuous composter. Compost Science and Utilization 23 (1): 11-17.

[36]    

Gregorich, E. G., Carter M, R., Angers, D. A, Monreal, C. M., and Ellert B. H. 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian. Journal of Soil Science 74: 367–385.

[37]    

Bonanomi, G., Incerti, G., Barile, E., Capodilupo, M., Antignani, V., Mingo, A., and Mazzoleni, S. 2012. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid‐state 13C NMR spectroscopy. New Phytologist, 191: 1018-1030.

[38]    

Wuest, S., and Skirvin, K. 1999. Crop residue and plant health: research overview and implications for no-till. Columbia Basin Agricultural Research Annual Report. Special Repeat 999: 81-84.

[39]    

Talgre, L., Lauringson, E., Roostalu, H., and Makke, A. 2014. Phosphorus and potassium release during decomposition of roots and shoots of green manure crops. Biological Agriculture Horticulture 30 (4): 264-271.

[40]    

Jeon W. T., Kim, M. T., Seong K. Y., and Oh I. S. 2008. Changes of soil properties and temperature by green manure under rice-based cropping system. Korean Journal of Crop Science 53: 413-416.

[41]    

Abawi, G, S., and Widmer, T, L. 2000. Impact of soil health management practices on soil-borne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology 15: 37-47.

[42]    

Manici, L. M., Ciavatta, C., Kelderer, M., and Erschbaumer, G. 2003. Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil 256 (2): 315-324.

[43]    

Berg, B., and McClaugherty, C. 2014. Decomposition as a process: some main features. In Plant Litter Plant Litter decomposition, humus formation, carbon Sequestration (eds) (pp. 11-34). Springer, Berlin, Heidelberg, doi/org 10.1007/978-3-642-38821-7.

[44]    

Bonanomi, G., Antignani, V., Pane, C., and Scala, F. 2007. Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology 89: 311-324.

[45]    

Blum U., Shafer S. R., and Lehman M. E., 1999. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Critical Review of Plant Science 18: 673-693.

[46]    

Yang, H., Niu, J., Tao, J., Gu, Y., Zhang, C., She, S., and Yin, H. 2016. The Impacts of Different Green Manure on Soil Microbial Communities and Crop Health. 10.20944/preprints201609.0056.v1.

[47]    

Nakhro, N., and Dkhar, M. S. 2010. Populations and biomass carbon in paddy field soil. Journal of Agrobiology 9: 102-110.

[48]    

Hoitink, H. A. J., Boehm, M. J., and Hadar, Y. 1999. Mechanisms of suppression of soil-borne plant pathogens in compost-amended substrates. In Science and Engineering of Composting, eds. pp. 601-21. Ohio, USA, Renaissance Publications, 728 pp.

[49]    

Aryantha, I. P., Cross, R., and Guest, D. I. 2000. Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology 90 (7): 775–782.

[50]    

Stone, A. G., Vallad, G. E., Cooperband, L. R., Rotenberg, D., Darby, H. M., James, R. V., Stevenson, W. R., and Goodman, R. M. 2003. Effect of organic amendments on soilborne and foliar diseases in field-grown snap bean and cucumber. Plant Disease, 87: 1037-1042.

[51]    

Ambrosano, E. J., Cantarella, H., Ambrosano, G. M. B., Dias, F. L. F., Rossi, F., Trivelin, P. C. O., and Muraoka, T. 2013. The role of green manure nitrogen uses by corn and sugarcane crops in Brazil. Agricultural Sciences 4: 89-92.

[52]    

Zhang, Q., Zhou, W., Liang, G., Wang, X., Sun, J., He, P., and Li, L. 2015. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PloS one 10 (4), e0124096.

[53]    

Conklin, A. E., Erich, M. S., Liebman, M., Lambert, D., Gallandt, E. R., and Halteman, W. A. 2002. Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant and Soil 238: 245-256.

[54]    

Wiggins, B. E., and Kinkel, L. L. 2005. Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous Streptomycetes, Phytopathology 95: 178-185.

[55]    

Nnabude, P. C., Nweke, I. A., and Nsoanya, L. N. 2015. Response of three varieties of tomatoes (Lycopersicon esculentus) to liquid organic fertilizer (alfa life) and inorganic fertilizer (NPK 20: 10: 10) and for soil improvements. European Journal of Physics and Agricultural Sciences 3: 28-37.

[56]    

Toledo Souza, E. D. D., Silveira, P. M. D., Café Filho, A. C., and Lobo Junior, M. 2012. Fusarium wilt incidence and common bean yield according to the preceding crop and the soil tillage system. Pesquisa Agropecuária Brasileira 47 (8), 1031-1037.

[57]    

Altieri, M. A., 1995. Agro-ecology: The science of sustainable agriculture (No. Ed 2. Intermediate Technology Publications Limited. Westview Press, Boulder, CO, p. 433.

[58]    

Bulluck, L. R., Brosiusb, M, Evanylob, G. K., and Ristainoa, J. B. 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19: 147-160.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership