ISSN Print: 2381-0998  ISSN Online: 2381-1005
Journal of Materials Sciences and Applications  
Manuscript Information
 
 
Strain-induced Electric Effects in Condensed Matters
Journal of Materials Sciences and Applications
Vol.5 , No. 3, Publication Date: Jun. 20, 2019, Page: 44-57
1003 Views Since June 20, 2019, 702 Downloads Since Jun. 20, 2019
 
 
Authors
 
[1]    

Yuanjie Huang, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, China.

 
Abstract
 

In this work, shock polarization, electric properties of dislocations and mechanical-electric coupling are investigated in condensed matters. By means of research, a new law for condensed matters was found and it was formally named as Yuheng Zhang equation. Utilizing this law, it is found that 1) under non-uniform strain, materials may behave as a p-n junction, exhibiting current-rectifying properties; 2) pure semiconductors with strain gradient can be utilized as a solar cell; 3) thermoelectric power or Seebeck coefficient of materials may be dominated by this law and thermal expansion (contraction); 4) this law gives a new mechanism of electron-phonon interaction; 5) an electric field always accompanies defects in materials, such as dislocations, Abrikosov vortices and so on, and their electric field and related electrical potential are given; 6) strain gradient can cause an electric polarization in dielectric materials; 7) the gravity induced electric field persists within planets including the earth; 8) this law may be the microscopic physical origin of flexoelectric effect and the flexoelectric coefficients can be derived by means of this equation; 9) microscopic theory of shock polarization, another long-standing problem in the world, may be clarified in terms of this law. In all, the newly found law may offer people new understanding of electric properties of strained materials, and may find various applications in multi-areas.


Keywords
 

Mechanical-electric Coupling, Dislocation, Shock Polarization, Flexoelectric Effect


Reference
 
[01]    

A. W. Stepanow, Über den mechanismus der plastischen deformation, Zs. Phys. 81, 560 (1933).

[02]    

J. E. Caffin and T. L. Goodfellow, Electrical effects associated with the mechanical deformation of single crystals of alkali halides, Nature, 176, 878 (1955).

[03]    

G. E. Hauver, Shock Induced Polarization in Plastics. II. Experimental Study of Plexiglas and Polystyrene, J. Appl. Phys. 36, 2113-2118 (1965).

[04]    

V. N. Mineev and A. G. Ivanov, Electromotive force produced by shock compression of a substance, Sov. Phys. Usp., 19, No. 5, 400-419 (1976).

[05]    

R. A. Graham, Shock-induced electrical activity in polymeric solids. a mechanically induced bond scission model, The Journal of Physical Chemistry, 83, No. 23, 3048-3056 (1979).

[06]    

Paul Harris, HenriNöel Presles, The shock induced electrical polarization of water, J. Chem. Phys. 77, 5157 (1982).

[07]    

A. I. Goncharov, S. P. Solovie, Shockk-induced polarization of materials, Combustion, Explosion, and Shock Waves, 40, No. 6, 658-662 (2004).

[08]    

Paul. Harris, Mechanism for the shock polarization of dielectrics, J. Appl. Phys. 36, No. 3, 739-741 (1965).

[09]    

J. Y. Wong, R. K. Linde, R. M. White, Electrical signals in dynamically stressed ionic crystals: a dislocation model, J. Appl. Phys. 40, No. 10, 4137-4145 (1969).

[10]    

F. E. Allison, Shock-induced polarization in plastics. I. theory, J. Appl. Phys. 36, No. 7, 2111-2113 (1965).

[11]    

R. J. Eichelberger and G. E. Hauver, in: Les ondes de detonation, P., 1961, p. 364.

[12]    

D. Hull, D. J. Bacon, Introduction to Dislocations (Pergamon, Oxford, 1994)

[13]    

D. B. Holt, B. G. Yacobi, Extended Defects in Semiconductors (Cambridge University Press, Cambridge, 2007)

[14]    

[14]. M. Reiche, M. Kittler, H. Uebensee, E. Pippel, S. Hopfe, Dislocations as native nanostructures-electronic properties, Adv. Nano Res. 2, 1 (2014).

[15]    

M. Reiche, M. Kittler, W. Erfurth, E. Pippel, K. Sklarek, H. Blumtritt, A. Haehnel, H. Uebensee, On the electronic properties of a single dislocation, J. Appl. Phys. 115, 194303 (2014).

[16]    

M. Reiche, M. Kittler, H. Ubensee, E. Pippel, A. Haehnel, S. Birner, Electronic properties of dislocations, Appl. Phys. A 122: 389 (2016).

[17]    

A. Hikata, C. Elbaum, B. Chick, R. Truell, Electrical-charge Study in Sodium Chloride During Plastic Deformation, J. Appl. Phys. 34, No. 8, 2154-2158 (1963).

[18]    

Frederick Seitz, Speculations on the Properties of The Silver Halide Crystals, Rev. Mod. Phys. 23, No. 4, 328-3532 (1951)

[19]    

R. J. Schwensfeir, C. Elbaum, Electric charge on dislocation arrays in sodium chloride, J. Phys. Chem. Solids, 28, 597-606 (1967).

[20]    

V. Nagarajan, C. L. Jia, H. Kohlstedt, R. Waser, I. B. Misirlioglu, S. P. Alpay, R. Ramesh, Misfit dislocations in nanoscale ferroelectric heterostructures, Appl. Phys. Lett. 86, 192910 (1-3) (2005).

[21]    

S. P. Alpay, I. B. Misirlioglu, V. Nagarajan, R. Ramesh, Can interface dislocations degrade ferroelectric properties? Appl. Phys. Lett. 85, No. 11, 2044-2046 (2004).

[22]    

Daesu Lee, Tae Won Noh, Giant flexoelectric effect through interfacial strain relaxation, Phil. Trans. R. Soc. A 370, 4944–4957 (2012).

[23]    

Yuanjie Huang, Yuheng Zhang Effect: Strain-induced electric effect in metals, viXra: 1707.0147 (2017).

[24]    

Holler, F. James; Skoog, Douglas A.; Crouch, Stanley R. Principles of Instrumental Analysis (6th ed.). Cengage Learning. (2007). p. 9.

[25]    

IUPAC Gold Book, definition of Galvani potential difference.

[26]    

Zhicheng Wang, Thermodynamics • Statistical Physics, 5th ed., Higher Education Press: Beijing, 2013, pp 145-148.

[27]    

Jenny Nelson, The Physics of Solar Cells (Yang Gao translate), Imperial College Press, United Kingdom, 2003 (Shanghai Jiao Tong University Press, 2011, pp 9.)

[28]    

Liangxiu Ye, Semiconductor Physics (part one), second edition, Higher Education Press, Beijing, 2007, pp 328.

[29]    

H. Joon Kim, S. Hoon Oh, and Hyun M. Jang, Thermodynamic theory of stress distribution in epitaxial Pb(Zr, Ti)O3 thin films, Appl. Phys. Lett. 75, 3195 (1999).

[30]    

A. Haug, Theoretical Solid State Physics, Pergamon Press, Oxford, 1972.

[31]    

G. D. Mahan, Good Thermoelectrics, Solid State Phys. 51, (1998) 81-157.

[32]    

C. Kittel, Introduction to Solid State Physics, seventh ed., John Wiley and Sons, Singapore, (2004).

[33]    

P. Taylor and O. Heinonen, A Quantum Approach to Condensed Matter Physics Cambridge University Press, Cambridge, U.K., 2002.

[34]    

Jianwei Cai, G. D. Mahan, Effective Seebeck Coefficient for Semiconductors, Phys. Rev. B 74, 075201 (1-3) (2006).

[35]    

Philip Phillips, Advanced Solid State Physics [b], Westview Press (USA), (2003), p. 179.

[36]    

G. Gruner, The Dynamics of Charge-density Waves, Rev. Mod. Phys. 60, No. 4, 1129-1181 (1988).

[37]    

Ulrich Messerschmidt, Dislocation dynamics during plastic deformation (Springer Series in Materials Science 129), Springer, (2010), p. 42.

[38]    

Yuanjie Huang, Possible source of the earth’s geomagnetic field, viXra: 1709.0024 (2017).

[39]    

K. X. Chen, Q. Dai, W. Lee, J. K. Kim, E. F. Schubert, J. Grandusky, M. Mendrick, X. Li, and J. A. Smart, Effect of dislocations on electrical and optical properties of n-type Al0.34Ga0.66N, Appl. Phys. Lett. 93, 192108 (2008).

[40]    

A. A. Allerman, M. H. Crawford, A. J. Fischer, K. H. A. Bogart, S. R. Lee, D. M. Follstaedt, P. P. Provencio, and D. D. Koleske, Growth and design of deep-UV (240–290nm) light emitting diodes using AlGaN alloys, J. Cryst. Growth 272, 227 (2004).

[41]    

Shakti Chauhan and Ashraf F. Bastawros, Probing thickness-dependent dislocation storage in freestanding Cu films using residual electrical resistivity, Appl. Phys. Lett. 93, 041901 (2008).

[42]    

R. P. Huebener, Dynamics of magnetic flux structures in superconductor, Physics Reports (Section C of Physics Letters), 13, No. 4, 143-189 (1974).

[43]    

https://en.wikipedia.org/wiki/Magnetic_pressure

[44]    

H. H. Wen, S. L. Li, Z. W. Zhao, H. Jin, Y. M. Ni, Z. A. Ren, G. C. Che and Z. X. Zhao, Magnetic relaxation and critical current density of the new superconductor MgB2, Supercond. Sci. Technol. 15, 315–319 (2002).

[45]    

Haihu Wen, Flux dynamics and vortex phase diagram of cuprate superconductors, Physics, 35, No. 1, 16 (2006).

[46]    

C. S. Yadav, P. L. Paulose, Upper critical field, lower critical field and critical current density of FeTe0.60Se0.40 single crystals, New Journal of Physics 11, 103046 (2009).

[47]    

Sh. M. Kogan, Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals, Sov. Phys. Solid State 5, 2069 (1964).

[48]    

A. K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883-5889 (1986).

[49]    

Wenhui Ma and L. Eric Cross, Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics, Appl. Phys. Lett. 78, 2920 (2001).

[50]    

H. Lu, C.-W. Bark, D. Esque de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, Mechanical writing of ferroelectric polarization, Science, 336, 59-61 (2012).

[51]    

Pavlo Zubko, Gustau Catalan, and Alexander K. Tagantsev, Flexoelectric effect in solids, Annual Review of Materials Research, Vol. 43: 387-421 (2013).

[52]    

S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, Q. He, Y. H. Chu, C. T. Nelson, M. S. Rzchowski, X. Q. Pan, R. Ramesh, L. Q. Chen and C. B. Eom, Ferroelastic switching for nanoscale non-volatile magnetoelectric devices, Nature Materials, 9, 309 (2010).

[53]    

D. Lee, A. Yoon, S. Y. Jang, J.-G. Yoon, J.-S. Chung, M. Kim, J. F. Scott, and T. W. Noh, Giant flexoelectric effect in ferroelectric epitaxial thin films, Phys. Rev. Lett. 107, 057602 (2011).

[54]    

H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, C. T. Nelson, C. M. Folkman, S. H. Baek, N. Balke, C. M. Brooks, D. A. Tenne, D. G. Schlom, L. Q. Chen, X. Q. Pan, S. V. Kalinin, V. Gopalan, and C. B. Eom, Ferroelectricity in strain-free SrTiO3 thin films, Phys. Rev. Lett. 104, 197601 (2010).

[55]    

Ronald K. Linde, William J. Murri, Donald G. Doran, Shock-induced electrical polarization of alkali halides, J. Appl. Phys. 37, No. 7, 2527-2532 (1966).

[56]    

Paul Harris, Electromechanical shock waves, Technical Report No. 4532, July (1973).

[57]    

S. A. Bordzilovskii, S. M. Karakhanov, V. V. Polyudov, Investigation of the EMF of certain metal pairs under shock compression, 480-483 (1972). (Novosibirsk. Translated from Fizika Goreniya i Vzryva, Vol. 8, No. 4, pp. 586-590, October-December, 1972. Original article submitted May 3, 1972.).

[58]    

A. Migault and J. Jacquesson, in: Symposium of High Dynamic Pressure, Pairs, 1967, p. 431.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership