ISSN Print: 2381-0998  ISSN Online: 2381-1005
Journal of Materials Sciences and Applications  
Manuscript Information
 
 
Electrospinning of Polyacrylonitrile Nanofiber Membrane for Bacteria Removal
Journal of Materials Sciences and Applications
Vol.4 , No. 5, Publication Date: Dec. 19, 2018, Page: 68-74
828 Views Since December 19, 2018, 812 Downloads Since Dec. 19, 2018
 
 
Authors
 
[1]    

Veereshgouda Shekharagouda Naragund, Materials Science Division, CSIR–National Aerospace Laboratories, Bengaluru, India.

[2]    

Prasanta Kumar Panda, Materials Science Division, CSIR–National Aerospace Laboratories, Bengaluru, India.

 
Abstract
 

Electrospinning is a popular method to obtain nanofibers. Polyacrylonitrile (PAN) nanofibers in the range of 50 to 750 nm were prepared by electrospinning of homogeneous viscous solutions with varied polymer concentration in 10 – 16% (w/v) range in N, N- Dimethylformamide (DMF). The morphology of fibers observed by Scanning Electron Microscopy (SEM) indicated that the morphology transformation from beaded fiber to cylindrical form occurred at 14%, and the average fiber diameter at this concentration is 379 ± 54 nm. The polyacrylonitrile nanofibers were characterized by the Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR). Differential Scanning Calorimeter (DSC) study of electrospun fibers revealed the presence of three thermal transitions in glass transition of PAN fibers. Membrane of 14% PAN nanofiber was subjected to vacuum for removal of air from the pores along with partial densification. This membrane was tested for bacteria reduction and found to eliminate model E. coli bacteria up to 99.9997%. In addition, membranes of different thicknesses in the range of 125 µm to 750 µm were also electrospun and flow rate of water (flux) was measured. It was found that the flux exponentially decreased with the increase in thickness due to the strong resistance to flow through nanosized pores.


Keywords
 

Polymer Membranes, Electrospinning, Nanofibers, Bacteria Removal, Vacuum Process


Reference
 
[01]    

R. Gopal, S. Kaur, C. Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, and T. Matsuura, Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal, J. Membr. Sci., 289, 210 (2007).

[02]    

M. Faccin, G. Borja, M. Boerrigter, D. M. Martín, S. M. Crespiera, S. Vázquez-Campos, L. Aubouy, and D. Amantia, Electrospun carbon nanofiber membranes for filtration of nanoparticles from water, J. Nanomater., 2 (2015).

[03]    

A. Sato, R. Wang, H. Ma, B. S. Hsiao, and B. Chu, Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability, J. Electron Microsc., 60, 201 (2011).

[04]    

H. Ma, B. S. Hsiao, and B. Chu, Electrospun nanofibrous membranes for high flux microfiltration, J. Membr. Sci., 60, 446 (2014).

[05]    

H. Ma, C. Burger, B. S. Hsiao, and B. Chu, Ultra-fine cellulose nanofibers: new nano-scale materials for water purification, J. Mater. Chem., 21, 7507 (2011).

[06]    

R. Wang, Y. Liu, B. Li, Hsiao BS, and Chu B. Electrospun nanofibrous membranes for high flux microfiltration, J. Membr. Sci., 392, 167 (2012).

[07]    

K. Saeed, S. Haider, T. J. Oh, and S. Y. Park, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption, J. Membr. Sci., 322, 400 (2008).

[08]    

S. Patel, and G. Hota, Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane, Fibers Polym., 15, 2272 (2014).

[09]    

R. Zhao, Y. Wang, X. Li, B. Sun, Y. Li, H. Ji, J. Qiu, and C. Wang, Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide, ACS Sustainable Chem. Eng., 4, 2584 (2016).

[10]    

M. Jambrich, and P. Hodul, Textile applications of polypropylene fibers, in Polypropylene, Springer, Dordrecht, (1999).

[11]    

P. Biswas, and R. Bandyopadhyaya, Water disinfection using silver nanoparticle impregnated activated carbon: Escherichia coli cell-killing in batch and continuous packed column operation over a long duration, Water Res., 100, 105 (2016).

[12]    

E. A. Garcia, M. A. Barcelo, P. Bond, J. Keller, W Gernjak, and J. Radjenovic, Hybrid electrochemical-granular activated carbon system for the treatment of greywater, Chem. Eng. J., 352, 405 (2018).

[13]    

J. Radjenovic, M. Petrovic, F. Ventura, and D. Barcelo, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res., 42, 3601 (2008).

[14]    

W. A. Hijnen, E. F. Beerendonk, and G. J. Medema, Inactivation credit of UV radiation for viruses, bacteria and protozoan cysts in water: a review, Water Res., 40, 3 (2006).

[15]    

S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Electrospun nanofibers: solving global issues, Mater. Today, 9, 40 (2006).

[16]    

L. Persano, A. Camposeo, C. Tekmen, and D. Pisignano, Industrial upscaling of electrospinning and applications of polymer nanofibers: a review, Macromol. Mater. Eng., 298, 504 (2013).

[17]    

P. K. Panda, and B. Sahoo, Synthesis and Applications of Electrospun Nanofibers - A Review, In: Nanotechnology Vol. 1: Fundamentals and Applications, Stadium Press, New Delhi, 399 (2013).

[18]    

P. K. Panda, Ceramic nanofibers by electrospinning technique—A review, Trans. Ind. Ceram. Soc., 66, 65 (2007).

[19]    

D. W. Hutmacher, and P. D. Dalton, Melt electrospinning, Chem. - Asian J., 6, 44 (2011).

[20]    

S. Sundarrajan, K. L. Tan, S. H. Lim, and S. Ramakrishna, Electrospun nanofibers for air filtration applications, Procedia Eng., 75, 159 (2014).

[21]    

A. Eatemadi, H. Daraee, N. Zarghami, M. H. Yar, and A. Akbarzadeh, Nanofiber: synthesis and biomedical applications, Artif. Cells, Nanomed. Biotechnol., 44, 111 (2016).

[22]    

S. F. Chou, D. Carson, and K. A. Woodrow, Current strategies for sustaining drug release from electrospun nanofibers, J. Control. Release, 220, 584 (2015).

[23]    

J. Sheng, Y. Xu, J. Yu, and B. Ding, Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application, ACS Appl. Mater. Interfaces, 9, 15139 (2017).

[24]    

A. Raza, Y. Li, J. Sheng, J. Yu, and B. Ding, Protective clothing based on electrospun nanofibrous membranes, in Electrospun Nanofibers for Energy and Environmental Applications, Springer, Berlin (2014).

[25]    

D. Chen, T. Liu, X. Zhou, W. C. Tjiu, and H. Hou, Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes, J. Phys. Chem. B, 113, 9741 (2009).

[26]    

M. Botes, and C. T. Eugene, The potential of nanofibers and nanobiocides in water purification, Crit. Rev. Microbiol., 36, 68 (2010).

[27]    

G. S. Simate, S. E. Iyuke, S. Ndlovu, M. Heydenrych, and L. F. Walubita, Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water, Environ. Int. 39, 38 (2012).

[28]    

J. Lee, J. Yoon, J. H. Kim, T. Lee, and H. Byun, Electrospun PAN–GO composite nanofibers as water purification membranes, J. Appl. Polym. Sci., 135, 45858 (2018).

[29]    

Y. Aykut, B. Pourdeyhimi, and S. A. Khan, Effects of surfactants on the microstructures of electrospun polyacrylonitrile nanofibers and their carbonized analogs, J. Appl. Polym. Sci., 130, 3726 (2013).

[30]    

R. Sandhya, and P. K. Panda, Effect of polymer concentration on morphology of polyacrylonitrile (PAN) nanofibers prepared by electrospinning technique, Nano Sci. Nano Technol.: Indian J., 7, 125 (2013).

[31]    

D. G. Yu, N. P. Chatterton, J. H. Yang, X. Wang, and Y. Z. Liao, Coaxial Electrospinning with Triton X‐100 Solutions as Sheath Fluids for Preparing PAN Nanofibers, Macromol. Mater. Eng., 297, 395 (2012).

[32]    

A. S. Kenyon, and M. J. Rayford, Mechanical Relaxation Processes in Polyacrylonitrile Polymers and Copolymers, J. Appl. Polym. Sci., 23, 717 (1979).

[33]    

L. Ji, A. J. Medford, and X. Zhang, Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide, Polymer, 50, 605 (2009).

[34]    

T. J. Xue, M. A McKinney, and C. A. Wilkie, The thermal degradation of polyacrylonitrile, Polym. Degrad. Stab., 58, 193 (1997).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership