






Vol.4 , No. 2, Publication Date: May 9, 2018, Page: 31-36
[1] | Lei Tang, School of Materials Science and Technology, Changzhou University, Changzhou, China. |
[2] | Jiajia Hu, School of Materials Science and Technology, Changzhou University, Changzhou, China; Materials Research and Education Center, Auburn University, Auburn, USA. |
[3] | Byran Chin, Materials Research and Education Center, Auburn University, Auburn, USA. |
[4] | Jing Hu, School of Materials Science and Technology, Changzhou University, Changzhou, China; Materials Research and Education Center, Auburn University, Auburn, USA. |
The magnetostrictive (ME) biosensors have been developed to detect pathogen rapidly and sensitively in fresh produce. The effects of concentration and incubated time of S. typhimurium enrichment on the detection sensitivity were investigated in this study. The concentrations ranging from 5×102 to 5×108 CFU/mL with incubated time of 22h, and incubated time ranging from 5h to 22h with the concentration of 5×102 CFU/mL were tested. The results showed that the higher concentration and longer incubated time, the more frequency changes due to the more bacteria binding on the ME biosensors. The micrographs by optical microscope were used to verify the bacteria binding on ME biosensors. The student t-test calculation was also used to analysis the difference between measurement and control sensors. The limit of detection (LOD) for phage-based magnetostrictive biosensors on fresh tomatoes was statistically determined to be lower than 5×102 CFU/mL for 5h enrichment with a confidence level of difference higher than 98% (p<0.05).
Keywords
Magnetostrictive, Biosensors, S. Typhimurium, Sensitivity, Detection
Reference
[01] | K. j. Yoshitomi, K. c. Jinneman, P. a. Orlandi, S. d. Weagant, R. Zapata, W. m. Fedio, Evaluation of rapid screening techniques for detection of Salmonella spp. from produce samples after pre-enrichment according to FDA BAM and a short secondary enrichment, Lett. Appl. Microbiol. 61 (2015) 7–12. |
[02] | N. D. Miller, P. M. Davidson, D. H. D’Souza, Real-time reverse-transcriptase PCR for Salmonella Typhimurium detection from lettuce and tomatoes, LWT - Food Sci. Technol. 44 (2011) 1088–1097. |
[03] | Q. Yang, F. Wang, K. L. Jones, J. Meng, W. Prinyawiwatkul, B. Ge, Evaluation of loop-mediated isothermal amplification for the rapid, reliable, and robust detection of Salmonella in produce, Food Microbiol. 46 (2015) 485–493. |
[04] | M.-K. Park, H. C. Wikle III, Y. Chai, S. Horikawa, W. Shen, B. A. Chin, The effect of incubation time for Salmonella Typhimurium binding to phage-based magnetostrictive biosensors, Food Control. 26 (2012) 539–545. |
[05] | G. Zhang, E. W. Brown, N. González-Escalona, Comparison of Real-Time PCR, Reverse Transcriptase Real-Time PCR, Loop-Mediated Isothermal Amplification, and the FDA Conventional Microbiological Method for the Detection of Salmonella spp. in Produce, Appl. Environ. Microbiol. 77 (2011) 6495–6501. |
[06] | J. Hu, R. Guntupalli, R. S. Lakshmanan, B. A. Chin, The Longevity of Polyclonal Antibody to Salmonella typhimurium at Different Temperatures on a Magnetostrictive Sensor Platform, Nanosci. Nanotechnol.-Asia. 1 (2011) 25–30. |
[07] | X. M. Ye, R. Guntupalli, B. A. Chin, J. Hu, Comparative study of thermal stability of magnetostrictive biosensors between two kinds of biorecognition elements,Mater. Sci. Eng., 41 (2014) 78–82. |
[08] | S. Horikawa, D. Bedi, S. Li, W. Shen, S. Huang, I.-H. Chen, et al., Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetostrictive biosensors, Biosens. Bioelectron. 26 (2011) 2361–2367. |
[09] | J. J. Hu, Y. T. Chai, S. Horikawa, H. C. Wikle, F. E. Wang, S. T. Du, B. A. Chin, J. Hu,The blocking reagent optimization for the magnetostrictive biosensor, Proc. of SPIE. 9488 (2015) 94880W-1~94880W-8. |
[10] | W. Shen, S. Li, M.-K. Park, Z. Zhang, Z. Cheng, V. A. Petrenko, et al., Blocking Agent Optimization for Nonspecific Binding on Phage Based Magnetostrictive Biosensors, J. Electrochem. Soc. 159 (2012) B818–B823. |
[11] | Y. Chai, S. Li, S. Horikawa, M.-K. Park, V. Vodyanoy, B. A. Chin, Rapid and Sensitive Detection of Salmonella Typhimurium on Eggshells by Using Wireless Biosensors, J. Food Prot. 75 (2012) 631–636. |
[12] | S. Li, Y. Li, H. Chen, S. Horikawa, W. Shen, A. Simonian, et al., Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetostrictive biosensors, Biosens. Bioelectron. 26 (2010) 1313–1319. |
[13] | R. Guntupalli, J. Hu, R. S. Lakshmanan, T. S. Huang, J. M. Barbaree, B. A. Chin, A magnetostrictive resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium, Biosens. Bioelectron. 22 (2007) 1474–1479. |
[14] | X. Ye, R. Guntupalli, R. S. Lakshmanan, B. A. Chin, J. Hu, Comparative study of thermal stability of magnetostrictive biosensor between two kinds of biorecognition elements, Mater. Sci. Eng. C. 41 (2014) 78–82. |
[15] | R. S. Lakshmanan, R. Guntupalli, J. Hu, V. A. Petrenko, J. M. Barbaree, B. A. Chin, Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetostrictive sensor, Sens. Actuators B Chem. 126 (2007) 544–550. |
[16] | Y. Chai, S. Horikawa, S. Li, H. C. Wikle, B. A. Chin, A surface-scanning coil detector for real-time, in-situ detection of bacteria on fresh food surfaces, Biosens. Bioelectron. 50 (2013) 311–317. |
[17] | M.-K. Park, K. A. Weerakoon, J.-H. Oh, B. A. Chin, The analytical comparison of phage-based magnetostrictive biosensor with TaqMan-based quantitative PCR method to detect Salmonella Typhimurium on cantaloupes, Food Control. 33 (2013) 330–336. |
[18] | Y. Chai, H. C. Wikle, Z. Wang, S. Horikawa, S. Best, Z. Cheng, et al., Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetostrictive biosensor, J. Appl. Phys. 114 (2013) 104504. |
[19] | Y. Chai, S. Horikawa, H. C. Wikle, Z. Wang, B. A. Chin, Surface-scanning coil detectors for magnetostrictive biosensors: A comparison of planar-spiral and solenoid coils, Appl. Phys. Lett. 103 (2013) 173510. |