






Vol.3 , No. 6, Publication Date: Dec. 5, 2017, Page: 102-109
[1] | Rui-Juan Bai, Sanya Technology Institute for Quality and Technical Supervision of Hainan Province, Sanya, P. R. China. |
[2] | You-Hui Fu, Sanya Technology Institute for Quality and Technical Supervision of Hainan Province, Sanya, P. R. China. |
[3] | Pei-Dong Sun, Sanya Technology Institute for Quality and Technical Supervision of Hainan Province, Sanya, P. R. China. |
[4] | Qiang-Wu, Sanya Technology Institute for Quality and Technical Supervision of Hainan Province, Sanya, P. R. China. |
In this work, we reported that three-dimensional (3D) honeycomb-like NiO nanoflakes can be directly deposited on nickel foam via a facile electrodeposition method. The effects of electrodeposition conditions including the deposition potential and deposition mass on structure and pseudocapacitive performance are systematically studied. The results show that the 3D honeycomb-like NiO film can be obtained at a potential of -0.7 V (vs. SCE) and a mass loading about 0.83 mg per square centimeter, thus providing superior electrochemical performance. For example, this 3D honeycomb-like NiO film can yield an extremely high specific capacitance of 1308 F g-1 at 3 A g-1 and still deliver 950 F g-1 at an ultra-high current density of 36 A g-1. The present work elaborates on a profound understanding for designing high-performance metal oxide electrodes for supercapacitors.
Keywords
Supercapacitor, Nickel Oxide, Electrochemical Deposition, Three-Dementional
Reference
[01] | M. P. Yeager, D. Su, N. S. Marinković, and X. W. Teng: Pseudocapacitive NiO Fine Nanoparticles for Supercapacitor ReactionsBatteries and Energy Storage. J. Electrochem. Soc. 159, A1598 (2012). |
[02] | P. Simon, A. F. Burke: Nanostructured carbons: Double-layer capacitance and more. Electrochem. Soc. Interface. 17, 38 (2008). |
[03] | Guangxia Hu, Chunhua Tang, Chunxiang Li, Huimin Li, Yu Wang, and Hao Gong: The Sol-Gel-Derived Nickel-Cobalt Oxides with High Supercapacitor Performances Batteries and Energy Storage. J. Electrochem. Soc. 158, A695 (2011). |
[04] | L. B. Kong, J. Zhang, J. J. An, Y. C. Luo, L. Kang: MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode. J. Mater. Sci. 43, 3664 (2008). |
[05] | J. W. Lang, L. B. Kong, W. J. Wu, Y. C. Luo, L. Kang: Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 35, 4213 (2008). |
[06] | J. Moghaddam, E. Hashemi: Fabrication and characterization of NiO nanoparticles by precipitation from aqueous solution, Korean J. Chem. Eng. 31, 503 (2014). |
[07] | N. Bagheri, A. Aghaei, N. Vlachopoulos, M. S. Nuckowska, et al.: Physicochemical identity and charge storage properties of battery-type nickel oxide material and its composites with activated carbon. Electrochim. Acta. 194, 480 (2016). |
[08] | A. D. Khalaji: Preparation and Characterization of NiO Nanoparticles Via Solid-State Thermal Decomposition of Nickel (II) Schiff Base Complexes [Ni(salophen)] and [Ni(Me-salophen)]. J. Clust. Sci. 24, 209 (2013). |
[09] | G. Anandha Babu, G. Ravi, M. Navaneethan, et al.: An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route. J. Mater. Sci. Mater. Electron. 25, 5231 (2014). |
[10] | Q. F. Wu, Z. H. Hu, Y. F. Liu: A Novel Electrode Material of NiO Prepared by Facile Hydrothermal Method for Electrochemical Capacitor Application. J. Materi. Eng. Perform. 22, 2398 (2013). |
[11] | X. Y. Guan, J. C. Deng: Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Mater. Lett. 61, 621 (2007). |
[12] | M. Muruganandham, R. P. Suri, M. Sillanpää, G. J. Lee, Jerry J. Wu: Facile synthesis of self-assembled biporous NiO and its electrochemical properties. Electron. Mater. Lett. 12, 693 (2016). |
[13] | R. A. Soomro, Z. H. Ibupoto,, Sirajuddin et al.: Practice of diclofenac sodium for the hydrothermal growth of NiO nanostructures and their application for enzyme free glucose biosensor, Microsyst. Technol. 22, 2549 (2016). |
[14] | A. Xiao, J. Yang, W. Zhang: Hierarchically porous-structured nickel oxide film prepared by chemical bath deposition through polystyrene spheres template. J. Porous Mater. 17, 283 (2010). |
[15] | T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, S. Yoshikawa: A modified sol-gel process-derived highly nanocrystalline mesoporous NiO with narrow pore size distribution, Colloids Surf. A: Physicochem. Eng. Asp. 296, 222 (2007). |
[16] | H. W. Wang, H. Yi, X. Chen, X. F. Wang: Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim. Acta. 105, 353 (2013). |
[17] | F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, H. F. Chen: Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J. Power Sources. 264, 161 (2014). |
[18] | M. Aghazadeh, M. R. Ganjali: Electrosynthesis of highly porous NiO nanostructure through pulse cathodic electrochemical deposition: heattreatment (PCED-HT) method with excellent supercapacitive performance. J. Mater. Sci.: Mater. Electron. 28, 8144 (2017). |
[19] | I. H. Lo, J. Y. Wang, K. Y. Huang, J. H. Huang, W. P. Kang: Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors, J. Power Sources 308, 29 (2016). |
[20] | C. F. Baes, R. E. Mesmer: The Hydrolysis of Cations. (John Wiley & Sons, New York, 1976), pp. 274, 276. |
[21] | C. C. Streinz, S. Motupally, J. W. Weidner: The Effect of Temperature and Ethanol on the Deposition of Nickel Hydroxide Films. J. Electrochem. Soc. 142, 4051 (1995). |
[22] | D. M. MacArthur: The Proton Diffusion Coefficient for the Nickel Hydroxide Electrode. J. Electrochem. Soc. 117, 729 (1970). |
[23] | M. Grdeń, K. Klimek, A. Czerwiński: A quartz crystal microbalance study on a metallic, nickel electrode. J. Solid State Electrochem. 8, 390 (2004). |
[24] | G. Su, M. Q. Song, W. Z. Sun, L. X. Cao, et al.: Electrodeposition in organic system and properties of NiO electrochromic films. Sci. China Technol. Sci. 55, 1545 (2012). |
[25] | I. C. Faria, R. Torresi, A. Gorenstein: Electrochemical intercalation in NiOx thin films. Electrochim. Acta. 38, 2765 (1993). |
[26] | Fu G. R. et al., Electrodeposition of Nickel Hydroxide Films on Nickel Foil and Its Electrochemical Performances for Supercapacitor, J. Electrochem. Sci. 4, 1052 (2009). |
[27] | T. N. Ramesh, P. V. Kamath: The effect of ‘crystallinity’ and structural disorder on the electrochemical performance of substituted nickel hydroxide electrodes. J. Solid State Electrochem. 13, 763 (2009). |
[28] | G. F. Cai, X. Wang, M. Q. Cui, P. Darmawan, J. X. Wang, et al.: Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano. Energy. 12, 258 (2015). |
[29] | V. Srinivasan, J. W. Weidner: Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors. J. Electrochem. Soc. 144, L210 (1997). |
[30] | V. Srinivasan, J. W. Weidner: Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration. J. Electrochem. Soc. 147, 880 (2000). |
[31] | D. D. Zhao, S. J. Bao, W. J. Zhou, H. L. Li: Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 9, 869 (2007). |
[32] | S. S. Zhu, Y. M. Dai, W. Huang, et al.: In situ preparation of NiO nanoflakes on Ni foams for high performance supercapacitors. Materi. Lett. 161, 731 (2015). |
[33] | M. W. Xu, D. D. Zhao, S. J. Bao, H. L. Li: Mesoporous amorphous MnO2 as electrode material for supercapacitor. J. Solid State Electrochem. 11, 1101 (2007). |
[34] | A. D. Jagadale, V. S. Kumbhar, D. S. Dhawale, C. D. Lokhande: Potentiodynamically deposited nickel oxide (NiO) nanoflakes for pseudocapacitors. J. Electroanalytical Chem. 704, 90 (2013). |