ISSN Print: 2381-0998  ISSN Online: 2381-1005
Journal of Materials Sciences and Applications  
Manuscript Information
 
 
Raman Spectroscopic Studies of Nickel- Oxide Doped ZnO Nanoparticles
Journal of Materials Sciences and Applications
Vol.3 , No. 2, Publication Date: Jun. 7, 2017, Page: 23-27
435 Views Since June 7, 2017, 1239 Downloads Since Jun. 7, 2017
 
 
Authors
 
[1]    

Mohamed A. Elbagermi, Department of Chemistry, Faculty of Science, University of Misurata, Misurata, Libya.

[2]    

Adel I. Alajtal, Department of Chemistry, Faculty of Science, University of Misurata, Misurata, Libya.

[3]    

Hoell G. M. Edwards, Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, West Yorkshire, UK.

[4]    

Aditya Sharma, Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh, (U.P.), India.

[5]    

keshav deo Verma, Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh, (U.P.), India.

 
Abstract
 

Zn1-xNixO (x = 1mol%, 3mol% and 5mol%) powders were prepared by a simple co- precipitation method and analysed using X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The XRD measurements revealed the formation of single phase Ni- doped ZnO up to Ni concentrations of x = 0.03. The Zn0.95Ni0.05O sample shows the formation of a secondary phase of NiO, which indicates the solubility limit of Ni in the ZnO matrix. The TEM micrograph shows the estimated grain size of doped & undoped ZnO to be approximately 20nm. Raman spectra of ZnO nanoparticles (ZnO-NPs), as well as the transition-metal-doped (5% Nickel) ZnO nanoparticles with the average size of 20 nm have been measured. A characteristic Raman peak at 434 cm-1 is observed in the ZnO-NPs, whereas the doped Zn1-x Nix O specimens (x= 1mol%, 3mol% and 5mol%) showed characteristic peaks shifted in wavenumber at 434, 430, and 425 cm-1, respectively. These peaks can be related to the formation of NiO species in the doped ZnO-NPs.


Keywords
 

ZnO, Ni-doped ZnO, Raman Spectroscopy


Reference
 
[01]    

R Y Sato-Berru, A Vazquez-Olmos, A L Fernadez-Osorio and S Stores-Martinez, (2007): J. Raman Spectrosc. 38: 1073-1076.

[02]    

Y Chen, D M Bagnall, K Park, K Hiraga, Z Zhu, T Yao, (1998): J. Appl. Phys. 84: 3912.

[03]    

J Nemeth, G Rodriguez-Gattorno, A Vazquez-Olmos, D Diaz, I Dekany, (2004): Langmuir. 20: 2855.

[04]    

S J Pearton, C R Abernathy, M E Overberg, G T Thaler, D Norton, N Thedoropoulou, A F Hebard, Y D Park, F Ren, J Kim, L A Boatner, (2003): J. Appl. Phys. 93: 1.

[05]    

K A Alim, V A Fonoberov, M Shamsa, A A Balandin, (2005): J. Appl. Phys. 97: 124313.

[06]    

X T Zhang, Y C Liu, Z Z Zhi, J Y Zhang, Y M Lu, D Z Shen, W Xu, G Z Zhong, X W Fan, K G Kong, (2001): J. Appl. Phys. 34: 3430.

[07]    

C Bundeshmann, N Ashkenov, M Schubert, D Spemann, T Butz, E M Kaidashev, M Lorenz, M Grundmann, (2003): Appl. Phys. Lett. 83: 1974.

[08]    

Y B Zhang, S Li, T T Tan, H S Park, (2006): Solid State Commun. 137: 142.

[09]    

W Gebicki, K Osuch, C Jastrzebski, Z Golacki, M Godlewski, (2005): Supperlattices Microstruct. 38: 428.

[10]    

N Ashkenov, B N Mbenkum, C Bundesmann, V Riede, M Lorenz, D Spemann, E M Kaidashev, A Kasic, M Schubert, M Grundmann, (2003): J. Appl. Phys. 93: 126.

[11]    

J F Scott, (1970): Phys. Rev. B. 2: 1209.

[12]    

M S H Choudhury, N. Kishi, and T. Soga, (2016): J. Alloys Compd. 656: 476-480.

[13]    

B Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B. K. Panigrahi, and T. Paramasivam, (2014): RSC Adv. 4, 6141 – 35743.

[14]    

P V Radovanovic and D R Gamelin, (2003): Phys. Rev. Lett. 91: 157202.

[15]    

A Sharma, A P Singh, P Thakur, N B Brookes, S Kumar, C G Lee, R J Choudhary, K D Verma, and R Kumar, (2010): J. Appl. Phys. 107: 093918.

[16]    

A Sharma, D. Prakash, and K. D. Verma, (2007): J. Opto. Adv. Mater.: Rap. Comm. 1: 683.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership