






Vol.3 , No. 2, Publication Date: Jun. 7, 2017, Page: 23-27
[1] | Mohamed A. Elbagermi, Department of Chemistry, Faculty of Science, University of Misurata, Misurata, Libya. |
[2] | Adel I. Alajtal, Department of Chemistry, Faculty of Science, University of Misurata, Misurata, Libya. |
[3] | Hoell G. M. Edwards, Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, West Yorkshire, UK. |
[4] | Aditya Sharma, Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh, (U.P.), India. |
[5] | keshav deo Verma, Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh, (U.P.), India. |
Zn1-xNixO (x = 1mol%, 3mol% and 5mol%) powders were prepared by a simple co- precipitation method and analysed using X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The XRD measurements revealed the formation of single phase Ni- doped ZnO up to Ni concentrations of x = 0.03. The Zn0.95Ni0.05O sample shows the formation of a secondary phase of NiO, which indicates the solubility limit of Ni in the ZnO matrix. The TEM micrograph shows the estimated grain size of doped & undoped ZnO to be approximately 20nm. Raman spectra of ZnO nanoparticles (ZnO-NPs), as well as the transition-metal-doped (5% Nickel) ZnO nanoparticles with the average size of 20 nm have been measured. A characteristic Raman peak at 434 cm-1 is observed in the ZnO-NPs, whereas the doped Zn1-x Nix O specimens (x= 1mol%, 3mol% and 5mol%) showed characteristic peaks shifted in wavenumber at 434, 430, and 425 cm-1, respectively. These peaks can be related to the formation of NiO species in the doped ZnO-NPs.
Keywords
ZnO, Ni-doped ZnO, Raman Spectroscopy
Reference
[01] | R Y Sato-Berru, A Vazquez-Olmos, A L Fernadez-Osorio and S Stores-Martinez, (2007): J. Raman Spectrosc. 38: 1073-1076. |
[02] | Y Chen, D M Bagnall, K Park, K Hiraga, Z Zhu, T Yao, (1998): J. Appl. Phys. 84: 3912. |
[03] | J Nemeth, G Rodriguez-Gattorno, A Vazquez-Olmos, D Diaz, I Dekany, (2004): Langmuir. 20: 2855. |
[04] | S J Pearton, C R Abernathy, M E Overberg, G T Thaler, D Norton, N Thedoropoulou, A F Hebard, Y D Park, F Ren, J Kim, L A Boatner, (2003): J. Appl. Phys. 93: 1. |
[05] | K A Alim, V A Fonoberov, M Shamsa, A A Balandin, (2005): J. Appl. Phys. 97: 124313. |
[06] | X T Zhang, Y C Liu, Z Z Zhi, J Y Zhang, Y M Lu, D Z Shen, W Xu, G Z Zhong, X W Fan, K G Kong, (2001): J. Appl. Phys. 34: 3430. |
[07] | C Bundeshmann, N Ashkenov, M Schubert, D Spemann, T Butz, E M Kaidashev, M Lorenz, M Grundmann, (2003): Appl. Phys. Lett. 83: 1974. |
[08] | Y B Zhang, S Li, T T Tan, H S Park, (2006): Solid State Commun. 137: 142. |
[09] | W Gebicki, K Osuch, C Jastrzebski, Z Golacki, M Godlewski, (2005): Supperlattices Microstruct. 38: 428. |
[10] | N Ashkenov, B N Mbenkum, C Bundesmann, V Riede, M Lorenz, D Spemann, E M Kaidashev, A Kasic, M Schubert, M Grundmann, (2003): J. Appl. Phys. 93: 126. |
[11] | J F Scott, (1970): Phys. Rev. B. 2: 1209. |
[12] | M S H Choudhury, N. Kishi, and T. Soga, (2016): J. Alloys Compd. 656: 476-480. |
[13] | B Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B. K. Panigrahi, and T. Paramasivam, (2014): RSC Adv. 4, 6141 – 35743. |
[14] | P V Radovanovic and D R Gamelin, (2003): Phys. Rev. Lett. 91: 157202. |
[15] | A Sharma, A P Singh, P Thakur, N B Brookes, S Kumar, C G Lee, R J Choudhary, K D Verma, and R Kumar, (2010): J. Appl. Phys. 107: 093918. |
[16] | A Sharma, D. Prakash, and K. D. Verma, (2007): J. Opto. Adv. Mater.: Rap. Comm. 1: 683. |