ISSN Print: 2472-9574  ISSN Online: 2472-9590
International Journal of Chemical and Biomedical Science  
Manuscript Information
 
 
Insights into Evaluation of Copper Based Drug as Chemotherapeutic Agent that Target tRNA: Spectroscopic, Biological and Molecular Docking Studies
International Journal of Chemical and Biomedical Science
Vol.1 , No. 5, Publication Date: Dec. 11, 2015, Page: 119-129
1528 Views Since December 11, 2015, 1041 Downloads Since Dec. 11, 2015
 
 
Authors
 
[1]    

Waddhaah M. Al–Asbahy, Department of Chemistry, Taiz University, Taiz, Yemen.

[2]    

Manal Shamsi, Department of Chemistry, Taiz University, Taiz, Yemen.

[3]    

Niyazi A. S. Al–Areqi, Department of Chemistry, Taiz University, Taiz, Yemen.

[4]    

Gamal Al–amery, Department of Microbology, Taiz University, Taiz, Yemen.

 
Abstract
 

Interaction of new dinuclear copper (II) complex 1, [Cu2 (glygly) 2 (ppz)(H2O) 4].2H2O, derived from dipeptide (glycyl glycine anion) and piperazine as a metallopeptide drug with tRNA was examined by UV–visible, Fourier transform–infrared (FT–IR), and fluorescence spectroscopy, circular dichroism (CD), and isothermal titration calorimetry (ITC). The binding constants (Kb), and binding site number (n), and corresponding thermodynamic parameters; ∆G, ∆H and ∆S were calculated. ITC results showed that the complex 1 binds strongly with tRNA (Kb ~ 4.504 ×104M–1). The distance between tRNA (donor) and complex 1 (acceptor) was estimated by means of fluorescence resonance energy transfer (FRET). The molecular docking technique utilized for ascertaining the mechanism and mode of action towards the molecular target tRNA indicated that complex 1 has a strong binding affinity to tRNA. Moreover, the growth inhibitory effects of the complex 1 on the sw480 cancer cell line were measured (IC50 ∼ 2.87 μg/ml).


Keywords
 

Transfer RNA, In vitro tRNA Binding, Circular Dichroism, Thermal Denaturation, Fluorescence Spectroscopy


Reference
 
[01]    

Sanchez–Cano C, Hannon M.J., Dalton Trans. (2009) 10702.

[02]    

Bruijnincx P.C.A., Peter S., Curr. Opin. Chem. Biol. 12 (2008) 197.

[03]    

Orvig C., Abrams M.J., Chem Rev. 99 (1999) 2201.

[04]    

Zhang C.X., Lippard S.J., Curr. Opin. Chem. Biol. 7 (2003) 481.

[05]    

Haas K.L., Franz K.J., Biology Chem Rev 109 (2009) 4921.

[06]    

Kelland L., Nature Rev. 7 (2007) 573.

[07]    

Barry P.E., Sadler P.J., ChemCommun. 49 (2013) 5106.

[08]    

Bokemeyer C., Berger C.C., Hartmann J.T., Kollmannsberger C, Schmoll H–J., Kuczyk M.A., and Kanz L., British J Cancer 77(8) (1998) 1355.

[09]    

Thompson K. H., Orvig C., Dalton Trans. (2006) 761.

[10]    

Via L.D., Magno S.M., Gia O., Marini A.M., Settimo F.D., J Med. Chem. 52 (2009) 5429.

[11]    

Katsoulakou E., Tiliakos M., Papaefstathiou G., Terzis A., Raptopoulou C., Geromichalos G., J Inorg. Biochem. 102 (2008) 1397.

[12]    

Ott I., Gust R., Arch. Pharm. Chem. Life Sci. 340 (2007) 117.

[13]    

Yakuphanoglu F., Sekerci M., J MolStruct. 751 (2005) 200.

[14]    

Marzano C., Pellei M., Tisato F., Santini C., Anti–Cancer Agent Med. Chem. 9 (2009) 185.

[15]    

Chen D, Cindy Q.C., Yang H., Dou Q.P., Cancer Res. 66(21) (2006) 10425.

[16]    

Foloppe N., Matassova N., Aboul–ela F., Drug Discovery Today 11 (21/22) (2006) 1019.

[17]    

Nelson P., Kiriakidou M., Sharma A., Maniataki E., Mourelatos Z., Trends Biochem. Sci. 28 (2003) 534.

[18]    

Gallego J., Varani G., Acc. Chem. Res. 34 (2001) 836.

[19]    

Corey D.R., J Clin. Invest. 117 (2007) 3615.

[20]    

Paul P., Kumar G.S., J Hazard Mater 263 (2013) 735.

[21]    

Tabassum S., Al–Asbahy W.M., Afzal M., Arjmand F., Bagchi V., Dalton Trans. 41 (2012) 4955.

[22]    

Islam M.M., Sinha R., Kumar G.S., Biophys. Chem. 125 (2007) 508.

[23]    

Reicmann M.E., Rice S.A., Thomas C.A., Doty P., J. Am. Chem. Soc. 76 (1954) 3047.

[24]    

Wolfe A., Shimer G.H., Meehan T., Biochemistry 26 (1987) 6392.

[25]    

Mustard D., Ritchie D. W., Struct. Funct. Bioinf. 60 (2005) 269.

[26]    

Liang X., Zou X., Tana L., Zhu W., J. Inorg. Biochem. 104 (2010) 1259.

[27]    

Wilson W.D., Ratmeyer L., Zhao M., Strekowski L., Boykin D., Biochemistry 32 (1993) 4098.

[28]    

Luedtke N.W., Hwang J.S., Nava E., Gut D., Kol M., Tor Y., Nucleic Acids Res. 31 (2003) 5732.

[29]    

Lakowiez J.R., Weber G., Biochemistry 12 (1973) 4161.

[30]    

Lo A.T.S., Salam N.K., Hibbs D.E., Rutledge P.J., Todd M.H., PLoSONE 6 (2011) 17446.

[31]    

Salim N.N., Feig A.L., Methods 47 (2009) 198.

[32]    

Pierce M.M., Raman C.S., Nall B.T., Methods 19 (1999) 213.

[33]    

Onori G., Santucci A., J. Mol. Liquids 69 (1996) 161.

[34]    

Mei H–Y., Barton J. K., Proc. Natl. Acad. Sci. U.S.A.85(5) (1988) 1339.

[35]    

Giri P., Kumar S.G., Biochim. Biophys. Acta 1770 (2007) 1419.

[36]    

Nomanbhoy T.K., Schimmel P., Bioorg. & Med. Chem. Letters 11 (2001) 1485.

[37]    

Xu H., Deng H., Zhang Q–L., Huang Y, Liu J–Z., Ji L–N., Inorg. Chem. Comm. 6 (2003) 766.

[38]    

Lakowicz J.R., Principles of Flourescence Spectroscopy. Kluwer Academic/Plenum Publishers 2nd ed. (1999) New York.

[39]    

Islam M.M., Pandya P., Chowdhury S.R., Kumar S., Kumar G.S., J. Mol.Struct. 891 (2008) 498.

[40]    

Maree C.F., Janine L.R., Clare M., Terry J., Hong J., Richard J.S., Meredith J.L., and Antony W, B., J. Cell Science 117 (2003)427.

[41]    

Agudelo D., Bourassa P., Beauregard M., Bérubé G., Tajmir–Riahi H–A., PLOS ONE 8 (2013) e69248.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership