







Vol.2 , No. 3, Publication Date: Sep. 14, 2017, Page: 15-19
[1] | Seidu Kudirat Titilope, Department of Food Technology, Federal Polytechnic, Ado-Ekiti, Nigeria. |
[2] | Ebiekuraju Elizabeth Tanimola, Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria. |
[3] | Lemomu Tajudeen Ireti, Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria. |
[4] | Akinola Olamilekan Ganiyu, Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria. |
[5] | Omidoyin Micheal Olawuyi, Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria. |
[6] | Kilanko Temitope, Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria. |
[7] | Onifade Damilola Christianah, Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria. |
Food security is of great concern in the developing countries especially in Nigeria, with the growing demands of an ever-increasing human population and current global food crisis. Rhizome of Anchomanes difformis was subjected to different steeping treatments (acid, alkali, NaCl, boiling and steeping); evaluated for mineral composition and functional properties using standard analytical techniques. The mineral composition showed potassium and calcium as the most abundant mineral in the flours (129.00 to 329.00 mg/100 g) and (39.50 to 74.00 mg/100 g) respectively; iron (9.30 to 57.20 mg/100 g) and Na/K (0.10 to 0.40). Water and oil absorption capacity ranged from 1.20 to 3.51 g/g and 1.35 to 2.30 g/g respectively; in-vitro starch digestibility (1.26 to 2.44 mg/g). Pasting characteristics showed final viscosity of 2.40 to 6818 cP; peak viscosity 16.00 to 4719 cP; set back 9.0 to 3779 cP; steeping and boiling decreased the pasting temperature while it was increased by NaCl. A. difformis flours possess potential for applications in food and other industries as such its utilisation will improve the formulation of value-added products.
Keywords
A. difformis, Pre-treatments, Mineral Composition, Pasting Properties, Functional Properties
Reference
[01] | Viano, J., Massoti, V., Gaydou, E. M., Bourrreil, P. J. L., Ghiglione, Giraud, M. (1995). Compositional characteristics of 10 wild plant legumes from Mediterranean French pastures. Journal of Agriculture Food Chemistry, 43: 680-683. |
[02] | Vijayakumari, K., Siddhuraju, P., Janardhanan, K. (1994). Nutritional assessment and chemical composition of the lesser known tree legume, Acacia leucophloea. Food Chemistry, 50: 2858. |
[03] | Afolayan, M. O., Omojola, M. O., Onwualu, A. P., Thomas, S. A. (2012). Further physicochemical characterization of Anchomanes difformis starch. Agriculture and Biology Journal of North America, 3 (1): 31-38. |
[04] | Burkill, H. M. (2000). The useful plants of west tropical Africa. Kew UK: Royal Botanic Gardens. |
[05] | Oyetayo, V. O. (2007). Comparative studies of the phytochemical and antimicrobial properties of the leaf, stem and tuber of Anchomanes difformis. Journal of Pharmaceutical Toxicology, 2: 407-410. |
[06] | Soladoye, M. O., Sonibare, M. A., Nadi, A. O., Alabi, D. A. (2005). Indigenous angiosperm biodiversity of Olabisi Onabanjo University permanent site. African Journal of Biotechnology, 4 (5): 554-562. |
[07] | Osho, A. Adetunji, T. (2010). Antimicrobial activity of Anchomanes difformis (Blume). Acta SATECH, 3: 87-90. |
[08] | Abah ES, Egwari LO and Mosaku TO (2011) In vitro antimicrobial screening of Anchomanes difformis (Blume) Engl. leaves and rhizomes against selected pathogens of public health importance. Advanced Biomedical Research, 5: 221-225. |
[09] | Association of Official Analytical Chemists (AOAC) (2012). Association of Analytical Chemist, Official Methods of Analysis. (19th ed.) Horowitz, Maryland. |
[10] | Mepba, H. D., Eboh, L., Nwaojigwa, S. U. (2007). Chemical composition, functional and baking properties of wheat composite flour. African Journal of Food Agriculture Nutrition and Development, 7 (1): 1-22. |
[11] | Singh, U., Klierdeker, M. S., Jambunathan, R. (1982). Studies on desi and Kabuli chickpeas (Cicer arieinum L) cultivars. The level of protein inhibitors, level of oligosaccharides and in-vitro digestibility. Journal of Food science, 47: 510-412. |
[12] | Osundahunsi, O. F. (2003). Scanning electron microscope study and pasting properties of unripe and ripe plantain. Journal of Food, Agriculture and Environment, 7 (4): 182-1186. |
[13] | Seidu, K. T., Osundahunsi, O. F., Olaleye, M. T., Oluwalana, I. B. (2015). Amino acid composition, mineral contents and protein solubility of some lima bean (Phaseolus lunatus L. Walp) seeds coat. Food Research International, 73: 130-134. |
[14] | Amza, T., Amadou, I., Zhu, K., Zhou, H. (2011). Effect of extraction and isolation on physicochemical and functional properties of an underutilised seed protein: gingerbread plum (Neocarya macrophylla). Food Research International, 44: 2843-2850. |
[15] | Seidu, K. T., Otutu, O. L. (2016). Phytochemical composition and radical scavenging activities of watermelon (Citrullus lanatus) seed constituents. Croatian Journal of Food Science and Technology, 8 (2): 83-89. |
[16] | Antia, B. S., Akpan, E. J., Okon, P. A., Umoren, I. U. (2006). Proximate composition and phytochemical constituents of leaves of some Acalypha species. Pakistan Journal of Nutrition, 5: 166-168. |
[17] | Aremu, M. O., Olaofe, O., Akintayo, E. T. (2006) Compositional evaluation of cowpea (Vigna unquiculata) and scarlet runner bean (Phaseolus coccineus) varieties grown in Nigeria. Journal of Food Agriculture and Environment, 4 (2): 39-43. |
[18] | Adegunwa, M. O., Adebowale, A. A., Solano, E. O. (2012). Effect of thermal processing on the biochemical composition, antinutritional factors and functional properties of beniseeds (Sesamum indicum) flour. American Journal of Biochemistry and Molecular Biology, 2: 175-182. |
[19] | James, E. O., Peter, I. A., Charles, N. I., Joel, N. (2013). Chemical composition and effect of processing and flour particle size on physicochemical and organoleptic properties of cocoyam (Colocasia esculenta var. esculenta) flour. Nigerian Food Journal, 31 (2): 113-122. |
[20] | Moure, A., Sineiro, J., Domínguez, K., Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Research International, 39: 945-963. |
[21] | Adebowale, K. O., Afolabi, T. A., Olu-Owolabi, B. I. (2006). Functional, physicochemical and retrogradation properties of sword bean (Canavalia gladiate) acetylated and oxidized starches. Carbohydrate Polymer, 65: 93-101. |
[22] | Atuonwu, A. C., Akobundu, E. N. T. (2012). Functional and pasting properties of pumpkin (Cucurbita pepo) seed products. Journal of Agricultural and Veterinary sciences, 2: 36-49. |
[23] | Ajewole, I. A., Ozo, O. N. (1994). Food gels from pregelatinized cocoyam (Xanthosoma species) flour: a comparative study. Journal of Agriculture and Technology, 2 (1): 63-66. |
[24] | Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L., Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition, 34 (3): 362-366. |
[25] | Wireko-Manu, F. D., Ellis, W. O., Oduro, I., Asiedu, R., Dixon, B. M. (2011). Physicochemical and pasting characteristics of water yam (D. alata) in comparison with pona (D. rotundata) from Ghana. European Journal of Food Research Review, 1: 149-158. |
[26] | Beta, T., Harold, C., Lioyd, W. R., John, R. N. T. (2001). Starch properties as affected by sorghum grain chemistry. Journal of Food Science and Agriculture, 81: 245-251. |
[27] | Adebowale, A. A., Sanni, L. O., Awonorin, S. O. (2005). Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Science and Technology International, 11: 373-382. |
[28] | Sanni, L. O., Kosoko, S. B., Adebowale, A. A., Adeoye, R. J. (2004). The influence of palm oil and chemical modification on the pasting and sensory properties of fufu flour. International Journal of Food Property, 7 (2): 229-237. |
[29] | Maziya-Dixon, B., Dixon, A. G. O., Adebowale, A. A. (2007). Targeting different end uses of cassava: genotypic variations for cyanogenic potentials and pasting properties. International Journal of Food Science and Technology, 42: 969-976. |