American Journal of Mathematical and Computational Sciences  
Manuscript Information
 
 
Another Modelling of α-Continuous Multifunctions
American Journal of Mathematical and Computational Sciences
Vol.2 , No. 4, Publication Date: Sep. 8, 2017, Page: 24-29
796 Views Since September 8, 2017, 510 Downloads Since Sep. 8, 2017
 
 
Authors
 
[1]    

Arafa Nasef, Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt.

[2]    

Abd El Fattah El-Atik, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt.

 
Abstract
 

In this paper, some new characterization of upper (lower) α-irresolute multifunctions due to Neubrunn and each of Noiri and Nasef will be established. Also, other properties have been presented and some results in are improved. The relationships between upper α-irresolute functions and other related multifunctions are also investigated.


Keywords
 

Upper α-Irresolute, lower α-Irresolute, α-Irresolute Multifunctions


Reference
 
[01]    

T. Neubrunn, Srongly quasi-continuous multivalued mappings, General Topology and Its Relations to Modern Analysis and Algebra VI, Proc. of the Symposium, Prauge, 1986, Heldermann Verlag Berlin, 1988, pp. 351-359.

[02]    

A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, -continuous and -open mappings, Acta Math. Acad. Sci. Hungar, 41 (1983), 213-218.

[03]    

S. N. Maheshwari and S. S. Thakur, On -irresolute functions, Tamakang J. Math. 11 (1980), 209-214.

[04]    

M. P. Denkowski, P. Pełszy´nska, On definable multifunctions and Łojasiewicz inequalities, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.07.019.

[05]    

A. Gavrilut, G. Apreutesei, Regularity aspects of non-additive set multifunctions, Fuzzy Sets and Systems 304 (2016) 94-109.

[06]    

T. Noiri and A. A. Nasef, On upper and lower -irresolute multifunctions, Res. Rep. Yatsushiro Nat. Coll. Tech. No. 20 (1998), 105-110.

[07]    

A. A. Nasef, Recent progress in theory of faint continuity, Mathematical and computer modelling 49 (2009), 536-541.

[08]    

O. Njástad, On some classes of nearly open sets, Pacfic J. Math., 15 (1965), 961-970.

[09]    

N. Levine, Semi-open sets and semi-continuity in topolological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

[10]    

A. S Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phy. Soc. Egypt, (1982), 47-53.

[11]    

M. E. Abd El-Monsef, S. N El-Deeb and R. A. Mahmoud, -open sets and -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1) (1983), 77-90.

[12]    

J. Cao and I. L. Railly, -continuous and -irresolute multifunctions, Mathematica Bohemica, (1996), 415-424.

[13]    

D. Andrijevi , Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.

[14]    

V. Popa and T. Noiri, On upper and lower -irresolute multifunctions, Real Analysis Exchange 22 (1997), 362-376.

[15]    

L. Reilly and M. K. Vamanamyrthy, Connectedness and strong semi-continuity, asopis Pêst. Mat. 109 (1984), 261-265.

[16]    

S. N. Maheshwari and S. S. Thakur, On -compact functions, Tamakang J. Math, 11 (1980), 209-214.

[17]    

V. Popa, Some properties of -almost continuous multifunctions, Problemy Mat. 10 (1988), 9-26.

[18]    

V. Popa, Sur certain forms faibles de continuite pour les multifonctions, Rev. Roumaine Math. Pures Appl. 30 (1985), 539-546.

[19]    

V. Popa and T. Noiri, On upper and lower -irresolute multifunctions, Math. Slovaca 43 (1996), 381-396.

[20]    

M. S. El-Naschie, Topics in the mathematical physics of E-infinity theory, Chaos, Solitons, Fractals 30 (2006), 656-663.





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership