American Journal of Mathematical and Computational Sciences  
Manuscript Information
 
 
Lacunary Series Expansions and Weighted Hyperbolic Class
American Journal of Mathematical and Computational Sciences
Vol.2 , No. 2, Publication Date: Aug. 25, 2017, Page: 10-18
403 Views Since August 25, 2017, 303 Downloads Since Aug. 25, 2017
 
 
Authors
 
[1]    

Alaa Kamal Mohamed, Department of Mathematics, Port Said University, Port Said, Egypt.

[2]    

Taha Ibrahim Yassen, Department of Mathematics, Port Said University, Port Said, Egypt.

 
Abstract
 

In this article, we obtained results which characterized spaces of hyperbolic function using integral representation of Hadamard gaps are given. Moreover, we obtain a sufficient and necessary condition for the hyperbolic function with Hadamard gaps to belong to on the unite disc .


Keywords
 

The Hyperbolic Weighted Space, Hadamard Gap, Lacunary Series Expansions


Reference
 
[01]    

R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis, 15 (1995), 101 - 121.

[02]    

H. Chen and W. Xu, Lacunary series and spaces on the unit ball, Ann. Acad. Sci. Fenn. Math, (35) (2010), 47-57.

[03]    

Dyakonov, M. Konstantin, Weighted Bloch spaces and , J. London Math. Soc. 65 (2) (2002), 411-417.

[04]    

A. El-Sayed Ahmed, Lacunary series in quaternion spaces, Complex Var. Elliptic Equ. 54 (7) (2009), 705-723.

[05]    

A. El-Sayed Ahmed, Lacunary series in weighted hyperholomorphic spaces, Numer. Funct. Anal. Optim. 32 (1) (2011), 41-58.

[06]    

A. El-Sayed Ahmed, A. Kamal and T. I. Yassen, Characterizations for type functions by series expansions with Hadamard gaps, CUBO. A Math. J, 01 (2014), 81-93.

[07]    

A. Kamal, A. El-Sayed Ahmed, and T. I. Yassen, Carleson Measures and Hadamard Products in Some General Analytic Function Spaces, J. Comput. Theor. Nanosci. 12 (2015), 2227-2236.

[08]    

J. Miao, A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. 45 (1992), 105 - 112.

[09]    

X. Li, On hyperbolic Q classes, Dissertation, University of Joensuu, Joensuu, 2005, Ann. Acad. Sci. Fenn. Math. Diss, 145 (2005), 65 pp.

[10]    

F. Pérez-González, J. Rättyä and J. Taskinen, Lipschitz continuous and compact composition operators in hyperbolic classes, Mediterr. J. Math. 8 (2011), 123-135.

[11]    

R. A. Rashwan, A. El-Sayed Ahmed and Alaa Kamal, Integral characterizations of weighted Bloch spaces and spaces, Math. tome. 51 (74) (2) (2009), 63-76.

[12]    

W. Smith and R. Zhao, Composition operators mapping into the spaces, Analysis, 17 (1997), 239-263.

[13]    

K. Stroethoff, Besov-type characterizations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405 - 420.

[14]    

J. Xiao, Extension of a theorem of Zygmund, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 415-423.

[15]    

J. Xiao, Holomorphic Classes, Springer LNM 1767, Berlin, (2001).

[16]    

S. Yamashita, Gap series and -Bloch functions, Yokohama Math. J., 28 (1980), 31-36.

[17]    

R. Zhao, On a general family of function spaces, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 105. Helsinki: Suomalainen Tiedeakatemia, (1996), 1-56.

[18]    

A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, (1959).





 
  Join Us
 
  Join as Reviewer
 
  Join Editorial Board
 
share:
 
 
Submission
 
 
Membership